You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

metafile.yml 14 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383
  1. Collections:
  2. - Name: Faster R-CNN
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - FPN
  11. - RPN
  12. - ResNet
  13. - RoIPool
  14. Paper:
  15. URL: https://arxiv.org/abs/1506.01497
  16. Title: 'Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks'
  17. README: configs/faster_rcnn/README.md
  18. Code:
  19. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/detectors/faster_rcnn.py#L6
  20. Version: v2.0.0
  21. Models:
  22. - Name: faster_rcnn_r50_caffe_dc5_1x_coco
  23. In Collection: Faster R-CNN
  24. Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco.py
  25. Metadata:
  26. Epochs: 12
  27. Results:
  28. - Task: Object Detection
  29. Dataset: COCO
  30. Metrics:
  31. box AP: 37.2
  32. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_1x_coco/faster_rcnn_r50_caffe_dc5_1x_coco_20201030_151909-531f0f43.pth
  33. - Name: faster_rcnn_r50_caffe_fpn_1x_coco
  34. In Collection: Faster R-CNN
  35. Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco.py
  36. Metadata:
  37. Training Memory (GB): 3.8
  38. Epochs: 12
  39. Results:
  40. - Task: Object Detection
  41. Dataset: COCO
  42. Metrics:
  43. box AP: 37.8
  44. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_1x_coco/faster_rcnn_r50_caffe_fpn_1x_coco_bbox_mAP-0.378_20200504_180032-c5925ee5.pth
  45. - Name: faster_rcnn_r50_fpn_1x_coco
  46. In Collection: Faster R-CNN
  47. Config: configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
  48. Metadata:
  49. Training Memory (GB): 4.0
  50. inference time (ms/im):
  51. - value: 46.73
  52. hardware: V100
  53. backend: PyTorch
  54. batch size: 1
  55. mode: FP32
  56. resolution: (800, 1333)
  57. Epochs: 12
  58. Results:
  59. - Task: Object Detection
  60. Dataset: COCO
  61. Metrics:
  62. box AP: 37.4
  63. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
  64. - Name: faster_rcnn_r50_fpn_2x_coco
  65. In Collection: Faster R-CNN
  66. Config: configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py
  67. Metadata:
  68. Training Memory (GB): 4.0
  69. inference time (ms/im):
  70. - value: 46.73
  71. hardware: V100
  72. backend: PyTorch
  73. batch size: 1
  74. mode: FP32
  75. resolution: (800, 1333)
  76. Epochs: 24
  77. Results:
  78. - Task: Object Detection
  79. Dataset: COCO
  80. Metrics:
  81. box AP: 38.4
  82. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth
  83. - Name: faster_rcnn_r101_caffe_fpn_1x_coco
  84. In Collection: Faster R-CNN
  85. Config: configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py
  86. Metadata:
  87. Training Memory (GB): 5.7
  88. Epochs: 12
  89. Results:
  90. - Task: Object Detection
  91. Dataset: COCO
  92. Metrics:
  93. box AP: 39.8
  94. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco/faster_rcnn_r101_caffe_fpn_1x_coco_bbox_mAP-0.398_20200504_180057-b269e9dd.pth
  95. - Name: faster_rcnn_r101_fpn_1x_coco
  96. In Collection: Faster R-CNN
  97. Config: configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py
  98. Metadata:
  99. Training Memory (GB): 6.0
  100. inference time (ms/im):
  101. - value: 64.1
  102. hardware: V100
  103. backend: PyTorch
  104. batch size: 1
  105. mode: FP32
  106. resolution: (800, 1333)
  107. Epochs: 12
  108. Results:
  109. - Task: Object Detection
  110. Dataset: COCO
  111. Metrics:
  112. box AP: 39.4
  113. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_1x_coco/faster_rcnn_r101_fpn_1x_coco_20200130-f513f705.pth
  114. - Name: faster_rcnn_r101_fpn_2x_coco
  115. In Collection: Faster R-CNN
  116. Config: configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py
  117. Metadata:
  118. Training Memory (GB): 6.0
  119. inference time (ms/im):
  120. - value: 64.1
  121. hardware: V100
  122. backend: PyTorch
  123. batch size: 1
  124. mode: FP32
  125. resolution: (800, 1333)
  126. Epochs: 24
  127. Results:
  128. - Task: Object Detection
  129. Dataset: COCO
  130. Metrics:
  131. box AP: 39.8
  132. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_2x_coco/faster_rcnn_r101_fpn_2x_coco_bbox_mAP-0.398_20200504_210455-1d2dac9c.pth
  133. - Name: faster_rcnn_x101_32x4d_fpn_1x_coco
  134. In Collection: Faster R-CNN
  135. Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py
  136. Metadata:
  137. Training Memory (GB): 7.2
  138. inference time (ms/im):
  139. - value: 72.46
  140. hardware: V100
  141. backend: PyTorch
  142. batch size: 1
  143. mode: FP32
  144. resolution: (800, 1333)
  145. Epochs: 12
  146. Results:
  147. - Task: Object Detection
  148. Dataset: COCO
  149. Metrics:
  150. box AP: 41.2
  151. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco/faster_rcnn_x101_32x4d_fpn_1x_coco_20200203-cff10310.pth
  152. - Name: faster_rcnn_x101_32x4d_fpn_2x_coco
  153. In Collection: Faster R-CNN
  154. Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py
  155. Metadata:
  156. Training Memory (GB): 7.2
  157. inference time (ms/im):
  158. - value: 72.46
  159. hardware: V100
  160. backend: PyTorch
  161. batch size: 1
  162. mode: FP32
  163. resolution: (800, 1333)
  164. Epochs: 24
  165. Results:
  166. - Task: Object Detection
  167. Dataset: COCO
  168. Metrics:
  169. box AP: 41.2
  170. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco/faster_rcnn_x101_32x4d_fpn_2x_coco_bbox_mAP-0.412_20200506_041400-64a12c0b.pth
  171. - Name: faster_rcnn_x101_64x4d_fpn_1x_coco
  172. In Collection: Faster R-CNN
  173. Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
  174. Metadata:
  175. Training Memory (GB): 10.3
  176. inference time (ms/im):
  177. - value: 106.38
  178. hardware: V100
  179. backend: PyTorch
  180. batch size: 1
  181. mode: FP32
  182. resolution: (800, 1333)
  183. Epochs: 12
  184. Results:
  185. - Task: Object Detection
  186. Dataset: COCO
  187. Metrics:
  188. box AP: 42.1
  189. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco/faster_rcnn_x101_64x4d_fpn_1x_coco_20200204-833ee192.pth
  190. - Name: faster_rcnn_x101_64x4d_fpn_2x_coco
  191. In Collection: Faster R-CNN
  192. Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py
  193. Metadata:
  194. Training Memory (GB): 10.3
  195. inference time (ms/im):
  196. - value: 106.38
  197. hardware: V100
  198. backend: PyTorch
  199. batch size: 1
  200. mode: FP32
  201. resolution: (800, 1333)
  202. Epochs: 24
  203. Results:
  204. - Task: Object Detection
  205. Dataset: COCO
  206. Metrics:
  207. box AP: 41.6
  208. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco/faster_rcnn_x101_64x4d_fpn_2x_coco_20200512_161033-5961fa95.pth
  209. - Name: faster_rcnn_r50_fpn_iou_1x_coco
  210. In Collection: Faster R-CNN
  211. Config: configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py
  212. Metadata:
  213. Epochs: 12
  214. Results:
  215. - Task: Object Detection
  216. Dataset: COCO
  217. Metrics:
  218. box AP: 37.9
  219. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_iou_1x_coco-fdd207f3.pth
  220. - Name: faster_rcnn_r50_fpn_giou_1x_coco
  221. In Collection: Faster R-CNN
  222. Config: configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py
  223. Metadata:
  224. Epochs: 12
  225. Results:
  226. - Task: Object Detection
  227. Dataset: COCO
  228. Metrics:
  229. box AP: 37.6
  230. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_giou_1x_coco-0eada910.pth
  231. - Name: faster_rcnn_r50_fpn_bounded_iou_1x_coco
  232. In Collection: Faster R-CNN
  233. Config: configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
  234. Metadata:
  235. Epochs: 12
  236. Results:
  237. - Task: Object Detection
  238. Dataset: COCO
  239. Metrics:
  240. box AP: 37.4
  241. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_bounded_iou_1x_coco-98ad993b.pth
  242. - Name: faster_rcnn_r50_caffe_dc5_mstrain_1x_coco
  243. In Collection: Faster R-CNN
  244. Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
  245. Metadata:
  246. Epochs: 12
  247. Results:
  248. - Task: Object Detection
  249. Dataset: COCO
  250. Metrics:
  251. box AP: 37.4
  252. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco/faster_rcnn_r50_caffe_dc5_mstrain_1x_coco_20201028_233851-b33d21b9.pth
  253. - Name: faster_rcnn_r50_caffe_dc5_mstrain_3x_coco
  254. In Collection: Faster R-CNN
  255. Config: configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
  256. Metadata:
  257. Epochs: 36
  258. Results:
  259. - Task: Object Detection
  260. Dataset: COCO
  261. Metrics:
  262. box AP: 38.7
  263. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco_20201028_002107-34a53b2c.pth
  264. - Name: faster_rcnn_r50_caffe_fpn_mstrain_2x_coco
  265. In Collection: Faster R-CNN
  266. Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
  267. Metadata:
  268. Training Memory (GB): 4.3
  269. Epochs: 24
  270. Results:
  271. - Task: Object Detection
  272. Dataset: COCO
  273. Metrics:
  274. box AP: 39.7
  275. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco_bbox_mAP-0.397_20200504_231813-10b2de58.pth
  276. - Name: faster_rcnn_r50_caffe_fpn_mstrain_3x_coco
  277. In Collection: Faster R-CNN
  278. Config: configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
  279. Metadata:
  280. Training Memory (GB): 3.7
  281. Epochs: 36
  282. Results:
  283. - Task: Object Detection
  284. Dataset: COCO
  285. Metrics:
  286. box AP: 39.9
  287. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_20210526_095054-1f77628b.pth
  288. - Name: faster_rcnn_r50_fpn_mstrain_3x_coco
  289. In Collection: Faster R-CNN
  290. Config: configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py
  291. Metadata:
  292. Training Memory (GB): 3.9
  293. Epochs: 36
  294. Results:
  295. - Task: Object Detection
  296. Dataset: COCO
  297. Metrics:
  298. box AP: 40.3
  299. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco/faster_rcnn_r50_fpn_mstrain_3x_coco_20210524_110822-e10bd31c.pth
  300. - Name: faster_rcnn_r101_caffe_fpn_mstrain_3x_coco
  301. In Collection: Faster R-CNN
  302. Config: configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
  303. Metadata:
  304. Training Memory (GB): 5.6
  305. Epochs: 36
  306. Results:
  307. - Task: Object Detection
  308. Dataset: COCO
  309. Metrics:
  310. box AP: 42.0
  311. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco/faster_rcnn_r101_caffe_fpn_mstrain_3x_coco_20210526_095742-a7ae426d.pth
  312. - Name: faster_rcnn_r101_fpn_mstrain_3x_coco
  313. In Collection: Faster R-CNN
  314. Config: configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py
  315. Metadata:
  316. Training Memory (GB): 5.8
  317. Epochs: 36
  318. Results:
  319. - Task: Object Detection
  320. Dataset: COCO
  321. Metrics:
  322. box AP: 41.8
  323. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco/faster_rcnn_r101_fpn_mstrain_3x_coco_20210524_110822-4d4d2ca8.pth
  324. - Name: faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco
  325. In Collection: Faster R-CNN
  326. Config: configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
  327. Metadata:
  328. Training Memory (GB): 7.0
  329. Epochs: 36
  330. Results:
  331. - Task: Object Detection
  332. Dataset: COCO
  333. Metrics:
  334. box AP: 42.5
  335. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco_20210524_124151-16b9b260.pth
  336. - Name: faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco
  337. In Collection: Faster R-CNN
  338. Config: configs/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
  339. Metadata:
  340. Training Memory (GB): 10.1
  341. Epochs: 36
  342. Results:
  343. - Task: Object Detection
  344. Dataset: COCO
  345. Metrics:
  346. box AP: 42.4
  347. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco/faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco_20210604_182954-002e082a.pth
  348. - Name: faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco
  349. In Collection: Faster R-CNN
  350. Config: configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
  351. Metadata:
  352. Training Memory (GB): 10.0
  353. Epochs: 36
  354. Results:
  355. - Task: Object Detection
  356. Dataset: COCO
  357. Metrics:
  358. box AP: 43.1
  359. Weights: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco_20210524_124528-26c63de6.pth

No Description

Contributors (3)