You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

mask_rcnn_r50_fpn_1x_cityscapes.py 1.7 kB

2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. _base_ = [
  2. '../_base_/models/mask_rcnn_r50_fpn.py',
  3. '../_base_/datasets/cityscapes_instance.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. backbone=dict(init_cfg=None),
  7. roi_head=dict(
  8. bbox_head=dict(
  9. type='Shared2FCBBoxHead',
  10. in_channels=256,
  11. fc_out_channels=1024,
  12. roi_feat_size=7,
  13. num_classes=8,
  14. bbox_coder=dict(
  15. type='DeltaXYWHBBoxCoder',
  16. target_means=[0., 0., 0., 0.],
  17. target_stds=[0.1, 0.1, 0.2, 0.2]),
  18. reg_class_agnostic=False,
  19. loss_cls=dict(
  20. type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
  21. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
  22. mask_head=dict(
  23. type='FCNMaskHead',
  24. num_convs=4,
  25. in_channels=256,
  26. conv_out_channels=256,
  27. num_classes=8,
  28. loss_mask=dict(
  29. type='CrossEntropyLoss', use_mask=True, loss_weight=1.0))))
  30. # optimizer
  31. # lr is set for a batch size of 8
  32. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  33. optimizer_config = dict(grad_clip=None)
  34. # learning policy
  35. lr_config = dict(
  36. policy='step',
  37. warmup='linear',
  38. warmup_iters=500,
  39. warmup_ratio=0.001,
  40. # [7] yields higher performance than [6]
  41. step=[7])
  42. runner = dict(
  43. type='EpochBasedRunner', max_epochs=8) # actual epoch = 8 * 8 = 64
  44. log_config = dict(interval=100)
  45. # For better, more stable performance initialize from COCO
  46. load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa

No Description

Contributors (3)