|
123456789101112131415161718192021222324252627282930313233 |
- # Cityscapes Dataset
-
- <!-- [DATASET] -->
-
- ```
- @inproceedings{Cordts2016Cityscapes,
- title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
- author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
- booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
- year={2016}
- }
- ```
-
- ## Common settings
-
- - All baselines were trained using 8 GPU with a batch size of 8 (1 images per GPU) using the [linear scaling rule](https://arxiv.org/abs/1706.02677) to scale the learning rate.
- - All models were trained on `cityscapes_train`, and tested on `cityscapes_val`.
- - 1x training schedule indicates 64 epochs which corresponds to slightly less than the 24k iterations reported in the original schedule from the [Mask R-CNN paper](https://arxiv.org/abs/1703.06870)
- - COCO pre-trained weights are used to initialize.
- - A conversion [script](../../tools/dataset_converters/cityscapes.py) is provided to convert Cityscapes into COCO format. Please refer to [install.md](../../docs/1_exist_data_model.md#prepare-datasets) for details.
- - `CityscapesDataset` implemented three evaluation methods. `bbox` and `segm` are standard COCO bbox/mask AP. `cityscapes` is the cityscapes dataset official evaluation, which may be slightly higher than COCO.
-
- ### Faster R-CNN
-
- | Backbone | Style | Lr schd | Scale | Mem (GB) | Inf time (fps) | box AP | Config | Download |
- | :-------------: | :-----: | :-----: | :---: | :------: | :------------: | :----: | :------: | :--------: |
- | R-50-FPN | pytorch | 1x | 800-1024 | 5.2 | - | 40.3 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes_20200502-829424c0.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/faster_rcnn_r50_fpn_1x_cityscapes_20200502_114915.log.json) |
-
- ### Mask R-CNN
-
- | Backbone | Style | Lr schd | Scale | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
- | :-------------: | :-----: | :-----: | :------: | :------: | :------------: | :----: | :-----: | :------: | :------: |
- | R-50-FPN | pytorch | 1x | 800-1024 | 5.3 | - | 40.9 | 36.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733-d2858245.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/cityscapes/mask_rcnn_r50_fpn_1x_cityscapes/mask_rcnn_r50_fpn_1x_cityscapes_20201211_133733.log.json) |
|