|
12345678910111213141516171819202122232425 |
- # AutoAssign: Differentiable Label Assignment for Dense Object Detection
-
- ## Introduction
-
- <!-- [ALGORITHM] -->
-
- ```
- @article{zhu2020autoassign,
- title={AutoAssign: Differentiable Label Assignment for Dense Object Detection},
- author={Zhu, Benjin and Wang, Jianfeng and Jiang, Zhengkai and Zong, Fuhang and Liu, Songtao and Li, Zeming and Sun, Jian},
- journal={arXiv preprint arXiv:2007.03496},
- year={2020}
- }
- ```
-
- ## Results and Models
-
- | Backbone | Style | Lr schd | Mem (GB) | box AP | Config | Download |
- |:---------:|:-------:|:-------:|:--------:|:------:|:------:|:--------:|
- | R-50 | caffe | 1x | 4.08 | 40.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/autoassign/autoassign_r50_fpn_8x2_1x_coco.py) |[model](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/autoassign/auto_assign_r50_fpn_1x_coco/auto_assign_r50_fpn_1x_coco_20210413_115540-5e17991f.log.json) |
-
- **Note**:
-
- 1. We find that the performance is unstable with 1x setting and may fluctuate by about 0.3 mAP. mAP 40.3 ~ 40.6 is acceptable. Such fluctuation can also be found in the original implementation.
- 2. You can get a more stable results ~ mAP 40.6 with a schedule total 13 epoch, and learning rate is divided by 10 at 10th and 13th epoch.
|