You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

atss_r101_fpn_1x_coco.py 2.0 kB

2 years ago
2 years ago
2 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364
  1. _base_ = [
  2. '../_base_/datasets/coco_detection.py',
  3. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. type='ATSS',
  7. backbone=dict(
  8. type='ResNeXt',
  9. depth=101,
  10. groups=64,
  11. base_width=4,
  12. num_stages=4,
  13. out_indices=(0, 1, 2, 3),
  14. frozen_stages=1,
  15. norm_cfg=norm_cfg,
  16. style='pytorch',
  17. init_cfg=dict(
  18. type='Pretrained', checkpoint='/tmp/code/code_test/resnext101_64x4d-ee2c6f71.pth')),
  19. neck=dict(
  20. type='FPN',
  21. in_channels=[256, 512, 1024, 2048],
  22. out_channels=256,
  23. start_level=1,
  24. add_extra_convs='on_output',
  25. num_outs=5),
  26. bbox_head=dict(
  27. type='ATSSHead',
  28. num_classes=80,
  29. in_channels=256,
  30. stacked_convs=4,
  31. feat_channels=256,
  32. anchor_generator=dict(
  33. type='AnchorGenerator',
  34. ratios=[1.0],
  35. octave_base_scale=8,
  36. scales_per_octave=1,
  37. strides=[8, 16, 32, 64, 128]),
  38. bbox_coder=dict(
  39. type='DeltaXYWHBBoxCoder',
  40. target_means=[.0, .0, .0, .0],
  41. target_stds=[0.1, 0.1, 0.2, 0.2]),
  42. loss_cls=dict(
  43. type='FocalLoss',
  44. use_sigmoid=True,
  45. gamma=2.0,
  46. alpha=0.25,
  47. loss_weight=1.0),
  48. loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
  49. loss_centerness=dict(
  50. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
  51. # training and testing settings
  52. train_cfg=dict(
  53. assigner=dict(type='ATSSAssigner', topk=9),
  54. allowed_border=-1,
  55. pos_weight=-1,
  56. debug=False),
  57. test_cfg=dict(
  58. nms_pre=1000,
  59. min_bbox_size=0,
  60. score_thr=0.05,
  61. nms=dict(type='nms', iou_threshold=0.6),
  62. max_per_img=100))
  63. # optimizer
  64. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

No Description

Contributors (3)