You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_yh_test12_surf.py 5.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175
  1. _base_ = [
  2. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  3. ]
  4. norm_cfg = dict(type='SyncBN', requires_grad=True)
  5. model = dict(
  6. type='ATSS',
  7. backbone=dict(
  8. type='ResNeXt',
  9. depth=101,
  10. groups=64,
  11. base_width=4,
  12. num_stages=4,
  13. out_indices=(0, 1, 2, 3),
  14. frozen_stages=1,
  15. norm_cfg=norm_cfg,
  16. dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
  17. stage_with_dcn=(False, True, True, True),
  18. style='pytorch',
  19. init_cfg=dict(
  20. type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')),
  21. neck=dict(
  22. type='FPN',
  23. in_channels=[256, 512, 1024, 2048],
  24. out_channels=256,
  25. start_level=1,
  26. add_extra_convs='on_output',
  27. num_outs=5),
  28. bbox_head=dict(
  29. type='PAAHead',
  30. reg_decoded_bbox=True,
  31. score_voting=True,
  32. topk=9,
  33. num_classes=2,
  34. in_channels=256,
  35. stacked_convs=4,
  36. feat_channels=256,
  37. anchor_generator=dict(
  38. type='AnchorGenerator',
  39. ratios=[1.0],
  40. octave_base_scale=8,
  41. scales_per_octave=1,
  42. strides=[8, 16, 32, 64, 128]),
  43. bbox_coder=dict(
  44. type='DeltaXYWHBBoxCoder',
  45. target_means=[.0, .0, .0, .0],
  46. target_stds=[0.1, 0.1, 0.2, 0.2]),
  47. loss_cls=dict(
  48. type='FocalLoss',
  49. use_sigmoid=True,
  50. gamma=2.0,
  51. alpha=0.25,
  52. loss_weight=1.0),
  53. loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
  54. loss_centerness=dict(
  55. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5)),
  56. # training and testing settings
  57. train_cfg=dict(
  58. assigner=dict(
  59. type='MaxIoUAssigner',
  60. pos_iou_thr=0.1,
  61. neg_iou_thr=0.1,
  62. min_pos_iou=0,
  63. ignore_iof_thr=-1),
  64. allowed_border=-1,
  65. pos_weight=-1,
  66. debug=False),
  67. test_cfg=dict(
  68. nms_pre=1000,
  69. min_bbox_size=0,
  70. score_thr=0.05,
  71. nms=dict(type='nms', iou_threshold=0.6),
  72. max_per_img=100))
  73. dataset_type = 'CocoDataset'
  74. classes = ('zangwuyise', 'guashang')
  75. img_norm_cfg = dict(
  76. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  77. train_pipeline = [
  78. dict(type='SimpleCopyPaste',
  79. scale=(0.5, 1.5),
  80. max_paste_objects=5,
  81. prob=0.7,
  82. flip_prob = 0.5,
  83. occluded_area_thresh=100,
  84. box_occlusion_thresh=10),
  85. dict(
  86. type='Resize',
  87. img_scale=[(1280, 1280), (1536, 1536)],
  88. multiscale_mode='range',
  89. keep_ratio=True),
  90. dict(type='RandomCrop', crop_size=(1536, 1536), allow_negative_crop=True),
  91. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  92. dict(type='BrightnessTransform', level=5, prob=0.5),
  93. dict(type='ContrastTransform', level=5, prob=0.5),
  94. dict(type='RandomShift', shift_ratio=0.5),
  95. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.5),
  96. dict(type='Normalize', **img_norm_cfg),
  97. dict(type='Pad', size_divisor=32),
  98. dict(type='DefaultFormatBundle'),
  99. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
  100. ]
  101. test_pipeline = [
  102. dict(type='LoadImageFromFile'),
  103. dict(
  104. type='MultiScaleFlipAug',
  105. img_scale=[(1536, 1536)],
  106. flip=False,
  107. transforms=[
  108. dict(type='Resize', keep_ratio=True),
  109. dict(type='RandomFlip'),
  110. dict(type='Normalize', **img_norm_cfg),
  111. dict(type='Pad', size_divisor=32),
  112. dict(type='ImageToTensor', keys=['img']),
  113. dict(type='Collect', keys=['img']),
  114. ])
  115. ]
  116. data = dict(
  117. samples_per_gpu=1,
  118. workers_per_gpu=8,
  119. train=dict(
  120. type='MultiImageMixDataset',
  121. dataset=dict(
  122. type=dataset_type,
  123. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  124. classes=classes,
  125. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/train_cat_mode.json',
  126. pipeline=[
  127. dict(type='LoadImageFromFile'),
  128. dict(type='LoadAnnotations', with_bbox=True)
  129. ],
  130. filter_empty_gt=False,
  131. ),
  132. pipeline=train_pipeline),
  133. val=dict(
  134. type=dataset_type,
  135. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  136. classes=classes,
  137. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/val_cat_mode.json',
  138. pipeline=test_pipeline,
  139. filter_empty_gt=False,),
  140. test=dict(
  141. type=dataset_type,
  142. img_prefix='/home/shanwei-luo/teamdata/surf0413/images/',
  143. classes=classes,
  144. ann_file='/home/shanwei-luo/teamdata/surf0413/annotations/val_cat_mode.json',
  145. pipeline=test_pipeline,
  146. filter_empty_gt=False))
  147. # optimizer
  148. optimizer = dict(type='SGD', lr=0.001, momentum=0.9, weight_decay=0.0001)
  149. optimizer_config = dict(grad_clip=None)
  150. # learning policy
  151. lr_config = dict(
  152. policy='CosineAnnealing',
  153. warmup='linear',
  154. warmup_iters=1000,
  155. warmup_ratio=1.0 / 10,
  156. min_lr_ratio=1e-5)
  157. runner = dict(type='EpochBasedRunner', max_epochs=40)
  158. evaluation = dict(interval=2, metric='bbox')
  159. checkpoint_config = dict(interval=2)
  160. log_config = dict(
  161. interval=20,
  162. hooks=[
  163. dict(type='TextLoggerHook'),
  164. # dict(type='TensorboardLoggerHook')
  165. ])

No Description

Contributors (3)