You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_pcb_test05.py 5.2 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. _base_ = '../cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py'
  2. model = dict(
  3. backbone=dict(
  4. dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
  5. stage_with_dcn=(False, True, True, True)),
  6. neck=dict(
  7. type='FPN',#FPN PAFPN
  8. in_channels=[256, 512, 1024, 2048],
  9. out_channels=256,
  10. num_outs=5),
  11. roi_head=dict(
  12. bbox_head=[
  13. dict(
  14. type='Shared2FCBBoxHead',
  15. in_channels=256,
  16. fc_out_channels=1024,
  17. roi_feat_size=7,
  18. num_classes=5,
  19. bbox_coder=dict(
  20. type='DeltaXYWHBBoxCoder',
  21. target_means=[0., 0., 0., 0.],
  22. target_stds=[0.1, 0.1, 0.2, 0.2]),
  23. reg_class_agnostic=True,
  24. loss_cls=dict(
  25. type='CrossEntropyLoss',
  26. use_sigmoid=False,
  27. loss_weight=1.0),
  28. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  29. loss_weight=1.0)),
  30. dict(
  31. type='Shared2FCBBoxHead',
  32. in_channels=256,
  33. fc_out_channels=1024,
  34. roi_feat_size=7,
  35. num_classes=5,
  36. bbox_coder=dict(
  37. type='DeltaXYWHBBoxCoder',
  38. target_means=[0., 0., 0., 0.],
  39. target_stds=[0.05, 0.05, 0.1, 0.1]),
  40. reg_class_agnostic=True,
  41. loss_cls=dict(
  42. type='CrossEntropyLoss',
  43. use_sigmoid=False,
  44. loss_weight=1.0),
  45. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  46. loss_weight=1.0)),
  47. dict(
  48. type='Shared2FCBBoxHead',
  49. in_channels=256,
  50. fc_out_channels=1024,
  51. roi_feat_size=7,
  52. num_classes=5,
  53. bbox_coder=dict(
  54. type='DeltaXYWHBBoxCoder',
  55. target_means=[0., 0., 0., 0.],
  56. target_stds=[0.033, 0.033, 0.067, 0.067]),
  57. reg_class_agnostic=True,
  58. loss_cls=dict(
  59. type='CrossEntropyLoss',
  60. use_sigmoid=False,
  61. loss_weight=1.0),
  62. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  63. ]))
  64. dataset_type = 'CocoDataset'
  65. classes = ('jinshuyiwu','loutong','fanghanyiwu','yanghua','hong')
  66. img_norm_cfg = dict(
  67. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  68. train_pipeline = [
  69. dict(type='LoadImageFromFile'),
  70. dict(type='LoadAnnotations', with_bbox=True),
  71. dict(
  72. type='Resize',
  73. img_scale=[(200, 200), (300, 300)],
  74. multiscale_mode='value',
  75. keep_ratio=True),
  76. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  77. dict(type='BrightnessTransform', level=5, prob=0.5),
  78. dict(type='ContrastTransform', level=5, prob=0.5),
  79. dict(type='RandomShift', shift_ratio=0.5),
  80. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  81. dict(type='Normalize', **img_norm_cfg),
  82. dict(type='Pad', size_divisor=32),
  83. dict(type='DefaultFormatBundle'),
  84. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  85. ]
  86. test_pipeline = [
  87. dict(type='LoadImageFromFile'),
  88. dict(
  89. type='MultiScaleFlipAug',
  90. img_scale=[(200, 200), (300, 300)],
  91. flip=True,
  92. transforms=[
  93. dict(type='Resize', keep_ratio=True),
  94. dict(type='RandomFlip'),
  95. dict(type='Normalize', **img_norm_cfg),
  96. dict(type='Pad', size_divisor=32),
  97. dict(type='ImageToTensor', keys=['img']),
  98. dict(type='Collect', keys=['img']),
  99. ])
  100. ]
  101. data = dict(
  102. samples_per_gpu=32,
  103. workers_per_gpu=8,
  104. train=dict(
  105. type=dataset_type,
  106. img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/images/train/',
  107. classes=classes,
  108. ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/annotations/train_new.json',
  109. pipeline=train_pipeline),
  110. val=dict(
  111. type=dataset_type,
  112. img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/images/val/',
  113. classes=classes,
  114. ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/annotations/val_new.json',
  115. pipeline=test_pipeline),
  116. test=dict(
  117. type=dataset_type,
  118. img_prefix='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/images/val/',
  119. classes=classes,
  120. ann_file='/home/shanwei-luo/userdata/datasets/AD_pcb_detect/annotations/val_new.json',
  121. pipeline=test_pipeline))
  122. # optimizer
  123. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  124. optimizer_config = dict(grad_clip=None)
  125. # learning policy
  126. lr_config = dict(
  127. policy='CosineAnnealing',
  128. warmup='linear',
  129. warmup_iters=2000,
  130. warmup_ratio=1.0 / 10,
  131. min_lr_ratio=1e-5)
  132. runner = dict(type='EpochBasedRunner', max_epochs=40)
  133. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)