You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_gs_detect01.py 5.0 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. model = dict(
  3. neck=dict(
  4. type='FPN',#FPN PAFPN
  5. in_channels=[256, 512, 1024, 2048],
  6. out_channels=256,
  7. num_outs=5),
  8. roi_head=dict(
  9. bbox_head=[
  10. dict(
  11. type='Shared2FCBBoxHead',
  12. in_channels=256,
  13. fc_out_channels=1024,
  14. roi_feat_size=7,
  15. num_classes=4,
  16. bbox_coder=dict(
  17. type='DeltaXYWHBBoxCoder',
  18. target_means=[0., 0., 0., 0.],
  19. target_stds=[0.1, 0.1, 0.2, 0.2]),
  20. reg_class_agnostic=True,
  21. loss_cls=dict(
  22. type='CrossEntropyLoss',
  23. use_sigmoid=False,
  24. loss_weight=1.0),
  25. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  26. loss_weight=1.0)),
  27. dict(
  28. type='Shared2FCBBoxHead',
  29. in_channels=256,
  30. fc_out_channels=1024,
  31. roi_feat_size=7,
  32. num_classes=4,
  33. bbox_coder=dict(
  34. type='DeltaXYWHBBoxCoder',
  35. target_means=[0., 0., 0., 0.],
  36. target_stds=[0.05, 0.05, 0.1, 0.1]),
  37. reg_class_agnostic=True,
  38. loss_cls=dict(
  39. type='CrossEntropyLoss',
  40. use_sigmoid=False,
  41. loss_weight=1.0),
  42. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  43. loss_weight=1.0)),
  44. dict(
  45. type='Shared2FCBBoxHead',
  46. in_channels=256,
  47. fc_out_channels=1024,
  48. roi_feat_size=7,
  49. num_classes=4,
  50. bbox_coder=dict(
  51. type='DeltaXYWHBBoxCoder',
  52. target_means=[0., 0., 0., 0.],
  53. target_stds=[0.033, 0.033, 0.067, 0.067]),
  54. reg_class_agnostic=True,
  55. loss_cls=dict(
  56. type='CrossEntropyLoss',
  57. use_sigmoid=False,
  58. loss_weight=1.0),
  59. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  60. ]))
  61. dataset_type = 'CocoDataset'
  62. classes = ('0','1','2','3')
  63. img_norm_cfg = dict(
  64. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  65. train_pipeline = [
  66. dict(type='LoadImageFromFile'),
  67. dict(type='LoadAnnotations', with_bbox=True),
  68. dict(
  69. type='Resize',
  70. img_scale=[(768, 768), (1024, 1024)],
  71. multiscale_mode='value',
  72. keep_ratio=True),
  73. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  74. dict(type='BrightnessTransform', level=5, prob=0.5),
  75. dict(type='ContrastTransform', level=5, prob=0.5),
  76. dict(type='RandomShift', shift_ratio=0.5),
  77. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  78. dict(type='Normalize', **img_norm_cfg),
  79. dict(type='Pad', size_divisor=32),
  80. dict(type='DefaultFormatBundle'),
  81. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  82. ]
  83. test_pipeline = [
  84. dict(type='LoadImageFromFile'),
  85. dict(
  86. type='MultiScaleFlipAug',
  87. img_scale=[(768, 768), (1024, 1024)],
  88. flip=True,
  89. transforms=[
  90. dict(type='Resize', keep_ratio=True),
  91. dict(type='RandomFlip'),
  92. dict(type='Normalize', **img_norm_cfg),
  93. dict(type='Pad', size_divisor=32),
  94. dict(type='ImageToTensor', keys=['img']),
  95. dict(type='Collect', keys=['img']),
  96. ])
  97. ]
  98. data = dict(
  99. samples_per_gpu=4,
  100. workers_per_gpu=8,
  101. train=dict(
  102. type=dataset_type,
  103. img_prefix='/home/shanwei-luo/userdata/datasets/gs_dataset/coco/train/',
  104. classes=classes,
  105. ann_file='/home/shanwei-luo/userdata/datasets/gs_dataset/coco/annotations/instances_train.json',
  106. pipeline=train_pipeline),
  107. val=dict(
  108. type=dataset_type,
  109. img_prefix='/home/shanwei-luo/userdata/datasets/gs_dataset/coco/val/',
  110. classes=classes,
  111. ann_file='/home/shanwei-luo/userdata/datasets/gs_dataset/coco/annotations/instances_val.json',
  112. pipeline=test_pipeline),
  113. test=dict(
  114. type=dataset_type,
  115. img_prefix='/home/shanwei-luo/userdata/datasets/gs_dataset/coco/val/',
  116. classes=classes,
  117. ann_file='/home/shanwei-luo/userdata/datasets/gs_dataset/coco/annotations/instances_val.json',
  118. pipeline=test_pipeline))
  119. # optimizer
  120. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  121. optimizer_config = dict(grad_clip=None)
  122. # learning policy
  123. lr_config = dict(
  124. policy='CosineAnnealing',
  125. warmup='linear',
  126. warmup_iters=1000,
  127. warmup_ratio=1.0 / 10,
  128. min_lr_ratio=1e-5)
  129. runner = dict(type='EpochBasedRunner', max_epochs=60)
  130. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)