You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test53.py 5.5 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. norm_cfg = dict(type='SyncBN', requires_grad=True)
  3. model = dict(
  4. backbone=dict(
  5. norm_cfg=norm_cfg,
  6. dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
  7. stage_with_dcn=(False, True, True, True)),
  8. neck=dict(
  9. type='FPN',#FPN PAFPN
  10. in_channels=[256, 512, 1024, 2048],
  11. out_channels=256,
  12. num_outs=5),
  13. roi_head=dict(
  14. bbox_head=[
  15. dict(
  16. type='Shared2FCBBoxHead',
  17. in_channels=256,
  18. fc_out_channels=1024,
  19. roi_feat_size=7,
  20. num_classes=11,
  21. bbox_coder=dict(
  22. type='DeltaXYWHBBoxCoder',
  23. target_means=[0., 0., 0., 0.],
  24. target_stds=[0.1, 0.1, 0.2, 0.2]),
  25. reg_class_agnostic=True,
  26. loss_cls=dict(
  27. type='FocalLoss',
  28. use_sigmoid=True,
  29. gamma=2.0,
  30. alpha=0.25,
  31. loss_weight=1.0),
  32. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  33. loss_weight=1.0)),
  34. dict(
  35. type='Shared2FCBBoxHead',
  36. in_channels=256,
  37. fc_out_channels=1024,
  38. roi_feat_size=7,
  39. num_classes=11,
  40. bbox_coder=dict(
  41. type='DeltaXYWHBBoxCoder',
  42. target_means=[0., 0., 0., 0.],
  43. target_stds=[0.05, 0.05, 0.1, 0.1]),
  44. reg_class_agnostic=True,
  45. loss_cls=dict(
  46. type='FocalLoss',
  47. use_sigmoid=True,
  48. gamma=2.0,
  49. alpha=0.25,
  50. loss_weight=1.0),
  51. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  52. loss_weight=1.0)),
  53. dict(
  54. type='Shared2FCBBoxHead',
  55. in_channels=256,
  56. fc_out_channels=1024,
  57. roi_feat_size=7,
  58. num_classes=11,
  59. bbox_coder=dict(
  60. type='DeltaXYWHBBoxCoder',
  61. target_means=[0., 0., 0., 0.],
  62. target_stds=[0.033, 0.033, 0.067, 0.067]),
  63. reg_class_agnostic=True,
  64. loss_cls=dict(
  65. type='FocalLoss',
  66. use_sigmoid=True,
  67. gamma=2.0,
  68. alpha=0.25,
  69. loss_weight=1.0),
  70. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  71. ]))
  72. dataset_type = 'CocoDataset'
  73. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  74. img_norm_cfg = dict(
  75. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  76. train_pipeline = [
  77. dict(type='LoadImageFromFile'),
  78. dict(type='LoadAnnotations', with_bbox=True),
  79. dict(
  80. type='Resize',
  81. img_scale=[(400, 400), (500, 500)],
  82. multiscale_mode='value',
  83. keep_ratio=True),
  84. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  85. dict(type='BrightnessTransform', level=5, prob=0.5),
  86. dict(type='ContrastTransform', level=5, prob=0.5),
  87. dict(type='RandomShift', shift_ratio=0.5),
  88. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  89. dict(type='Normalize', **img_norm_cfg),
  90. dict(type='Pad', size_divisor=32),
  91. dict(type='DefaultFormatBundle'),
  92. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  93. ]
  94. test_pipeline = [
  95. dict(type='LoadImageFromFile'),
  96. dict(
  97. type='MultiScaleFlipAug',
  98. img_scale=[(400, 400)],
  99. flip=False,
  100. transforms=[
  101. dict(type='Resize', keep_ratio=True),
  102. dict(type='RandomFlip'),
  103. dict(type='Normalize', **img_norm_cfg),
  104. dict(type='Pad', size_divisor=32),
  105. dict(type='ImageToTensor', keys=['img']),
  106. dict(type='Collect', keys=['img']),
  107. ])
  108. ]
  109. data = dict(
  110. samples_per_gpu=16,
  111. workers_per_gpu=8,
  112. train=dict(
  113. type=dataset_type,
  114. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_train/images/',
  115. classes=classes,
  116. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_train/annotations/train.json',
  117. pipeline=train_pipeline),
  118. val=dict(
  119. type=dataset_type,
  120. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/images/',
  121. classes=classes,
  122. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/annotations/test.json',
  123. pipeline=test_pipeline),
  124. test=dict(
  125. type=dataset_type,
  126. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/images/',
  127. classes=classes,
  128. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v10/dsxw_test/annotations/test.json',
  129. pipeline=test_pipeline))
  130. # optimizer
  131. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  132. optimizer_config = dict(grad_clip=None)
  133. # learning policy
  134. lr_config = dict(
  135. policy='CosineAnnealing',
  136. warmup='linear',
  137. warmup_iters=5000,
  138. warmup_ratio=1.0 / 10,
  139. min_lr_ratio=1e-5)
  140. runner = dict(type='EpochBasedRunner', max_epochs=60)
  141. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)