You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test34.py 4.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. _base_ = ['../_base_/schedules/schedule_1x_original.py', '../_base_/default_runtime.py']
  2. # model settings
  3. model = dict(
  4. type='YOLOX',
  5. backbone=dict(type='CSPDarknet', deepen_factor=1.0, widen_factor=1.0),
  6. neck=dict(
  7. type='YOLOXPAFPN',
  8. in_channels=[256, 512, 1024],
  9. out_channels=256,
  10. num_csp_blocks=3),
  11. bbox_head=dict(
  12. type='YOLOXHead', num_classes=11, in_channels=256, feat_channels=256),
  13. train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
  14. # In order to align the source code, the threshold of the val phase is
  15. # 0.01, and the threshold of the test phase is 0.001.
  16. test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
  17. # dataset settings
  18. dataset_type = 'CocoDataset'
  19. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  20. img_norm_cfg = dict(
  21. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  22. img_scale = (448, 448)
  23. train_pipeline = [
  24. dict(type='Mosaic', img_scale=img_scale, pad_val=0),
  25. dict(
  26. type='MixUp',
  27. img_scale=img_scale,
  28. ratio_range=(0.8, 1.6),
  29. pad_val=114.0),
  30. dict(
  31. type='RandomAffine',
  32. scaling_ratio_range=(0.1, 2),
  33. border=(-img_scale[0] // 2, -img_scale[1] // 2)),
  34. dict(
  35. type='PhotoMetricDistortion',
  36. brightness_delta=32,
  37. contrast_range=(0.5, 1.5),
  38. saturation_range=(0.5, 1.5),
  39. hue_delta=18),
  40. dict(type='RandomFlip', flip_ratio=0.5),
  41. dict(type='Resize', keep_ratio=True),
  42. dict(type='Pad', size_divisor=32),
  43. dict(type='Normalize', **img_norm_cfg),
  44. dict(type='DefaultFormatBundle'),
  45. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
  46. ]
  47. train_dataset = dict(
  48. type='MultiImageMixDataset',
  49. dataset=dict(
  50. type=dataset_type,
  51. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v6/dsxw_train/images/',
  52. classes=classes,
  53. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v6/dsxw_train/annotations/train.json',
  54. pipeline=[
  55. dict(type='LoadImageFromFile', to_float32=True),
  56. dict(type='LoadAnnotations', with_bbox=True)
  57. ],
  58. filter_empty_gt=False,
  59. ),
  60. pipeline=train_pipeline,
  61. dynamic_scale=img_scale)
  62. test_pipeline = [
  63. dict(type='LoadImageFromFile'),
  64. dict(
  65. type='MultiScaleFlipAug',
  66. img_scale=img_scale,
  67. flip=False,
  68. transforms=[
  69. dict(type='Resize', keep_ratio=True),
  70. dict(type='RandomFlip'),
  71. dict(type='Pad', size_divisor=32),
  72. dict(type='Normalize', **img_norm_cfg),
  73. dict(type='DefaultFormatBundle'),
  74. dict(type='Collect', keys=['img'])
  75. ])
  76. ]
  77. data = dict(
  78. samples_per_gpu=16,
  79. workers_per_gpu=8,
  80. train=train_dataset,
  81. val=dict(
  82. type=dataset_type,
  83. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/images/',
  84. classes=classes,
  85. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/annotations/test.json',
  86. pipeline=test_pipeline),
  87. test=dict(
  88. type=dataset_type,
  89. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/images/',
  90. classes=classes,
  91. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/annotations/test.json',
  92. pipeline=test_pipeline))
  93. # optimizer
  94. # default 8 gpu
  95. optimizer = dict(
  96. type='SGD',
  97. lr=0.01,
  98. momentum=0.9,
  99. weight_decay=5e-4,
  100. nesterov=True,
  101. paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
  102. optimizer_config = dict(grad_clip=None)
  103. # learning policy
  104. lr_config = dict(
  105. _delete_=True,
  106. policy='YOLOX',
  107. warmup='exp',
  108. by_epoch=False,
  109. warmup_by_epoch=True,
  110. warmup_ratio=1,
  111. warmup_iters=5, # 5 epoch
  112. num_last_epochs=15,
  113. min_lr_ratio=0.05)
  114. runner = dict(type='EpochBasedRunner', max_epochs=60)
  115. resume_from = None
  116. interval = 5
  117. custom_hooks = [
  118. dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
  119. dict(
  120. type='SyncRandomSizeHook',
  121. ratio_range=(11, 17),
  122. img_scale=img_scale,
  123. priority=48),
  124. dict(
  125. type='SyncNormHook',
  126. num_last_epochs=15,
  127. interval=interval,
  128. priority=48),
  129. dict(type='ExpMomentumEMAHook', resume_from=resume_from, priority=49)
  130. ]
  131. checkpoint_config = dict(interval=interval)
  132. evaluation = dict(interval=interval, metric='bbox')
  133. log_config = dict(interval=50)

No Description

Contributors (3)