You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test32.py 5.3 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. model = dict(
  3. neck=dict(
  4. type='FPN',#FPN PAFPN
  5. in_channels=[256, 512, 1024, 2048],
  6. out_channels=256,
  7. num_outs=5),
  8. roi_head=dict(
  9. bbox_head=[
  10. dict(
  11. type='Shared2FCBBoxHead',
  12. in_channels=256,
  13. fc_out_channels=1024,
  14. roi_feat_size=7,
  15. num_classes=11,
  16. bbox_coder=dict(
  17. type='DeltaXYWHBBoxCoder',
  18. target_means=[0., 0., 0., 0.],
  19. target_stds=[0.1, 0.1, 0.2, 0.2]),
  20. reg_class_agnostic=True,
  21. loss_cls=dict(
  22. type='FocalLoss',
  23. use_sigmoid=True,
  24. gamma=2.0,
  25. alpha=0.25,
  26. loss_weight=1.0),
  27. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  28. loss_weight=1.0)),
  29. dict(
  30. type='Shared2FCBBoxHead',
  31. in_channels=256,
  32. fc_out_channels=1024,
  33. roi_feat_size=7,
  34. num_classes=11,
  35. bbox_coder=dict(
  36. type='DeltaXYWHBBoxCoder',
  37. target_means=[0., 0., 0., 0.],
  38. target_stds=[0.05, 0.05, 0.1, 0.1]),
  39. reg_class_agnostic=True,
  40. loss_cls=dict(
  41. type='FocalLoss',
  42. use_sigmoid=True,
  43. gamma=2.0,
  44. alpha=0.25,
  45. loss_weight=1.0),
  46. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  47. loss_weight=1.0)),
  48. dict(
  49. type='Shared2FCBBoxHead',
  50. in_channels=256,
  51. fc_out_channels=1024,
  52. roi_feat_size=7,
  53. num_classes=11,
  54. bbox_coder=dict(
  55. type='DeltaXYWHBBoxCoder',
  56. target_means=[0., 0., 0., 0.],
  57. target_stds=[0.033, 0.033, 0.067, 0.067]),
  58. reg_class_agnostic=True,
  59. loss_cls=dict(
  60. type='FocalLoss',
  61. use_sigmoid=True,
  62. gamma=2.0,
  63. alpha=0.25,
  64. loss_weight=1.0),
  65. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  66. ]))
  67. dataset_type = 'CocoDataset'
  68. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  69. img_norm_cfg = dict(
  70. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  71. train_pipeline = [
  72. dict(type='LoadImageFromFile'),
  73. dict(type='LoadAnnotations', with_bbox=True),
  74. dict(
  75. type='Resize',
  76. img_scale=[(400, 400), (500, 500)],
  77. multiscale_mode='value',
  78. keep_ratio=True),
  79. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  80. dict(type='BrightnessTransform', level=5, prob=0.5),
  81. dict(type='ContrastTransform', level=5, prob=0.5),
  82. dict(type='RandomShift', shift_ratio=0.5),
  83. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  84. dict(type='Normalize', **img_norm_cfg),
  85. dict(type='Pad', size_divisor=32),
  86. dict(type='DefaultFormatBundle'),
  87. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  88. ]
  89. test_pipeline = [
  90. dict(type='LoadImageFromFile'),
  91. dict(
  92. type='MultiScaleFlipAug',
  93. img_scale=[(400, 400)],
  94. flip=False,
  95. transforms=[
  96. dict(type='Resize', keep_ratio=True),
  97. dict(type='RandomFlip'),
  98. dict(type='Normalize', **img_norm_cfg),
  99. dict(type='Pad', size_divisor=32),
  100. dict(type='ImageToTensor', keys=['img']),
  101. dict(type='Collect', keys=['img']),
  102. ])
  103. ]
  104. data = dict(
  105. samples_per_gpu=16,
  106. workers_per_gpu=8,
  107. train=dict(
  108. type=dataset_type,
  109. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v6/dsxw_train/images/',
  110. classes=classes,
  111. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v6/dsxw_train/annotations/train.json',
  112. pipeline=train_pipeline),
  113. val=dict(
  114. type=dataset_type,
  115. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/images/',
  116. classes=classes,
  117. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/annotations/test.json',
  118. pipeline=test_pipeline),
  119. test=dict(
  120. type=dataset_type,
  121. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/images/',
  122. classes=classes,
  123. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_test_0121_0130/annotations/test.json',
  124. pipeline=test_pipeline))
  125. # optimizer
  126. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  127. optimizer_config = dict(grad_clip=None)
  128. # learning policy
  129. lr_config = dict(
  130. policy='CosineAnnealing',
  131. warmup='linear',
  132. warmup_iters=3000,
  133. warmup_ratio=1.0 / 10,
  134. min_lr_ratio=1e-5)
  135. runner = dict(type='EpochBasedRunner', max_epochs=60)
  136. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)