You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test28.py 5.5 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. _base_ = [
  2. '../_base_/models/cascade_rcnn_r50_fpn.py',
  3. '../_base_/schedules/schedule_1x_original.py', '../_base_/default_runtime.py'
  4. ]
  5. model = dict(
  6. backbone=dict(
  7. _delete_=True,
  8. type='PyramidVisionTransformerV2',
  9. mlp_ratios=(4, 4, 4, 4),
  10. embed_dims=64,
  11. num_layers=[3, 4, 18, 3],
  12. init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
  13. 'releases/download/v2/pvt_v2_b3.pth')),
  14. neck=dict(
  15. type='FPN',#FPN PAFPN
  16. in_channels=[64, 128, 320, 512],
  17. out_channels=256,
  18. num_outs=5),
  19. roi_head=dict(
  20. bbox_head=[
  21. dict(
  22. type='Shared2FCBBoxHead',
  23. in_channels=256,
  24. fc_out_channels=1024,
  25. roi_feat_size=7,
  26. num_classes=11,
  27. bbox_coder=dict(
  28. type='DeltaXYWHBBoxCoder',
  29. target_means=[0., 0., 0., 0.],
  30. target_stds=[0.1, 0.1, 0.2, 0.2]),
  31. reg_class_agnostic=True,
  32. loss_cls=dict(
  33. type='CrossEntropyLoss',
  34. use_sigmoid=False,
  35. loss_weight=1.0),
  36. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  37. loss_weight=1.0)),
  38. dict(
  39. type='Shared2FCBBoxHead',
  40. in_channels=256,
  41. fc_out_channels=1024,
  42. roi_feat_size=7,
  43. num_classes=11,
  44. bbox_coder=dict(
  45. type='DeltaXYWHBBoxCoder',
  46. target_means=[0., 0., 0., 0.],
  47. target_stds=[0.05, 0.05, 0.1, 0.1]),
  48. reg_class_agnostic=True,
  49. loss_cls=dict(
  50. type='CrossEntropyLoss',
  51. use_sigmoid=False,
  52. loss_weight=1.0),
  53. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  54. loss_weight=1.0)),
  55. dict(
  56. type='Shared2FCBBoxHead',
  57. in_channels=256,
  58. fc_out_channels=1024,
  59. roi_feat_size=7,
  60. num_classes=11,
  61. bbox_coder=dict(
  62. type='DeltaXYWHBBoxCoder',
  63. target_means=[0., 0., 0., 0.],
  64. target_stds=[0.033, 0.033, 0.067, 0.067]),
  65. reg_class_agnostic=True,
  66. loss_cls=dict(
  67. type='CrossEntropyLoss',
  68. use_sigmoid=False,
  69. loss_weight=1.0),
  70. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  71. ]))
  72. dataset_type = 'CocoDataset'
  73. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  74. img_norm_cfg = dict(
  75. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  76. train_pipeline = [
  77. dict(type='LoadImageFromFile'),
  78. dict(type='LoadAnnotations', with_bbox=True),
  79. dict(
  80. type='Resize',
  81. img_scale=[(400, 400), (450, 450)],
  82. multiscale_mode='value',
  83. keep_ratio=True),
  84. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  85. dict(type='BrightnessTransform', level=5, prob=0.5),
  86. dict(type='ContrastTransform', level=5, prob=0.5),
  87. dict(type='RandomShift', shift_ratio=0.5),
  88. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  89. dict(type='Normalize', **img_norm_cfg),
  90. dict(type='Pad', size_divisor=32),
  91. dict(type='DefaultFormatBundle'),
  92. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  93. ]
  94. test_pipeline = [
  95. dict(type='LoadImageFromFile'),
  96. dict(
  97. type='MultiScaleFlipAug',
  98. img_scale=(400, 400),
  99. flip=False,
  100. transforms=[
  101. dict(type='Resize', keep_ratio=True),
  102. dict(type='RandomFlip'),
  103. dict(type='Normalize', **img_norm_cfg),
  104. dict(type='Pad', size_divisor=32),
  105. dict(type='ImageToTensor', keys=['img']),
  106. dict(type='Collect', keys=['img']),
  107. ])
  108. ]
  109. data = dict(
  110. samples_per_gpu=16,
  111. workers_per_gpu=8,
  112. train=dict(
  113. type=dataset_type,
  114. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/images/',
  115. classes=classes,
  116. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/annotations/train.json',
  117. pipeline=train_pipeline),
  118. val=dict(
  119. type=dataset_type,
  120. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  121. classes=classes,
  122. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  123. pipeline=test_pipeline),
  124. test=dict(
  125. type=dataset_type,
  126. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  127. classes=classes,
  128. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  129. pipeline=test_pipeline))
  130. # optimizer
  131. optimizer_config = dict(grad_clip=None)
  132. optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
  133. # learning policy
  134. lr_config = dict(
  135. policy='step',
  136. warmup='linear',
  137. warmup_iters=3000,
  138. warmup_ratio=0.001,
  139. step=[8, 11])
  140. runner = dict(type='EpochBasedRunner', max_epochs=60)
  141. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)