You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test20.py 5.4 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145
  1. _base_ = '../cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py'
  2. model = dict(
  3. backbone=dict(
  4. _delete_=True,
  5. type='PyramidVisionTransformerV2',
  6. mlp_ratios=(4, 4, 4, 4),
  7. embed_dims=64,
  8. num_layers=[3, 4, 18, 3],
  9. init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
  10. 'releases/download/v2/pvt_v2_b3.pth')),
  11. neck=dict(
  12. type='FPN',#FPN PAFPN
  13. in_channels=[64, 128, 320, 512],
  14. out_channels=256,
  15. num_outs=5),
  16. roi_head=dict(
  17. bbox_head=[
  18. dict(
  19. type='Shared2FCBBoxHead',
  20. in_channels=256,
  21. fc_out_channels=1024,
  22. roi_feat_size=7,
  23. num_classes=11,
  24. bbox_coder=dict(
  25. type='DeltaXYWHBBoxCoder',
  26. target_means=[0., 0., 0., 0.],
  27. target_stds=[0.1, 0.1, 0.2, 0.2]),
  28. reg_class_agnostic=True,
  29. loss_cls=dict(
  30. type='CrossEntropyLoss',
  31. use_sigmoid=False,
  32. loss_weight=1.0),
  33. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  34. loss_weight=1.0)),
  35. dict(
  36. type='Shared2FCBBoxHead',
  37. in_channels=256,
  38. fc_out_channels=1024,
  39. roi_feat_size=7,
  40. num_classes=11,
  41. bbox_coder=dict(
  42. type='DeltaXYWHBBoxCoder',
  43. target_means=[0., 0., 0., 0.],
  44. target_stds=[0.05, 0.05, 0.1, 0.1]),
  45. reg_class_agnostic=True,
  46. loss_cls=dict(
  47. type='CrossEntropyLoss',
  48. use_sigmoid=False,
  49. loss_weight=1.0),
  50. loss_bbox=dict(type='SmoothL1Loss', beta=1.0,
  51. loss_weight=1.0)),
  52. dict(
  53. type='Shared2FCBBoxHead',
  54. in_channels=256,
  55. fc_out_channels=1024,
  56. roi_feat_size=7,
  57. num_classes=11,
  58. bbox_coder=dict(
  59. type='DeltaXYWHBBoxCoder',
  60. target_means=[0., 0., 0., 0.],
  61. target_stds=[0.033, 0.033, 0.067, 0.067]),
  62. reg_class_agnostic=True,
  63. loss_cls=dict(
  64. type='CrossEntropyLoss',
  65. use_sigmoid=False,
  66. loss_weight=1.0),
  67. loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
  68. ]))
  69. dataset_type = 'CocoDataset'
  70. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  71. img_norm_cfg = dict(
  72. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  73. train_pipeline = [
  74. dict(type='LoadImageFromFile'),
  75. dict(type='LoadAnnotations', with_bbox=True),
  76. dict(
  77. type='Resize',
  78. img_scale=[(400, 300), (500, 400)],
  79. multiscale_mode='value',
  80. keep_ratio=True),
  81. dict(type='RandomFlip', flip_ratio=[0.2,0.2,0.2], direction=['horizontal', 'vertical', 'diagonal']),
  82. dict(type='BrightnessTransform', level=5, prob=0.5),
  83. dict(type='ContrastTransform', level=5, prob=0.5),
  84. dict(type='RandomShift', shift_ratio=0.5),
  85. dict(type='MinIoURandomCrop', min_ious=(0.5, 0.7, 0.9), min_crop_size=0.8),
  86. dict(type='Normalize', **img_norm_cfg),
  87. dict(type='Pad', size_divisor=32),
  88. dict(type='DefaultFormatBundle'),
  89. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
  90. ]
  91. test_pipeline = [
  92. dict(type='LoadImageFromFile'),
  93. dict(
  94. type='MultiScaleFlipAug',
  95. img_scale=[(400, 300), (500, 400)],
  96. flip=True,
  97. transforms=[
  98. dict(type='Resize', keep_ratio=True),
  99. dict(type='RandomFlip'),
  100. dict(type='Normalize', **img_norm_cfg),
  101. dict(type='Pad', size_divisor=32),
  102. dict(type='ImageToTensor', keys=['img']),
  103. dict(type='Collect', keys=['img']),
  104. ])
  105. ]
  106. data = dict(
  107. samples_per_gpu=16,
  108. workers_per_gpu=8,
  109. train=dict(
  110. type=dataset_type,
  111. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/images/',
  112. classes=classes,
  113. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_train/annotations/train.json',
  114. pipeline=train_pipeline),
  115. val=dict(
  116. type=dataset_type,
  117. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  118. classes=classes,
  119. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  120. pipeline=test_pipeline),
  121. test=dict(
  122. type=dataset_type,
  123. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/images/',
  124. classes=classes,
  125. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v5/dsxw_test/annotations/test.json',
  126. pipeline=test_pipeline))
  127. # optimizer
  128. optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
  129. optimizer_config = dict(grad_clip=None)
  130. # learning policy
  131. lr_config = dict(
  132. policy='CosineAnnealing',
  133. warmup='linear',
  134. warmup_iters=3000,
  135. warmup_ratio=1.0 / 10,
  136. min_lr_ratio=1e-5)
  137. runner = dict(type='EpochBasedRunner', max_epochs=60)
  138. evaluation = dict(interval=5, metric='bbox')

No Description

Contributors (3)