You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

AD_dsxw_test19.py 4.5 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. _base_ = ['../_base_/schedules/schedule_1x_original.py', '../_base_/default_runtime.py']
  2. # model settings
  3. model = dict(
  4. type='YOLOX',
  5. backbone=dict(type='CSPDarknet', deepen_factor=1.0, widen_factor=1.0),
  6. neck=dict(
  7. type='YOLOXPAFPN',
  8. in_channels=[256, 512, 1024],
  9. out_channels=256,
  10. num_csp_blocks=3),
  11. bbox_head=dict(
  12. type='YOLOXHead', num_classes=11, in_channels=256, feat_channels=256),
  13. train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
  14. # In order to align the source code, the threshold of the val phase is
  15. # 0.01, and the threshold of the test phase is 0.001.
  16. test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
  17. # dataset settings
  18. dataset_type = 'CocoDataset'
  19. classes = ('yiwei','loujian','celi','libei','fantie','lianxi','duojian','shunjian','shaoxi','jiahan','yiwu')
  20. img_norm_cfg = dict(
  21. mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
  22. img_scale = (400, 400)
  23. train_pipeline = [
  24. dict(type='Mosaic', img_scale=img_scale, pad_val=0),
  25. dict(
  26. type='RandomAffine',
  27. scaling_ratio_range=(0.1, 2),
  28. border=(-img_scale[0] // 2, -img_scale[1] // 2)),
  29. dict(
  30. type='PhotoMetricDistortion',
  31. brightness_delta=32,
  32. contrast_range=(0.5, 1.5),
  33. saturation_range=(0.5, 1.5),
  34. hue_delta=18),
  35. dict(type='RandomFlip', flip_ratio=0.5),
  36. dict(type='Resize', keep_ratio=True),
  37. dict(type='Pad', size_divisor=32),
  38. dict(type='Normalize', **img_norm_cfg),
  39. dict(type='DefaultFormatBundle'),
  40. dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
  41. ]
  42. train_dataset = dict(
  43. type='MultiImageMixDataset',
  44. dataset=dict(
  45. type=dataset_type,
  46. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v4/dsxw_train/images/',
  47. classes=classes,
  48. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v4/dsxw_train/annotations/train.json',
  49. pipeline=[
  50. dict(type='LoadImageFromFile', to_float32=True),
  51. dict(type='LoadAnnotations', with_bbox=True)
  52. ],
  53. filter_empty_gt=False,
  54. ),
  55. pipeline=train_pipeline,
  56. dynamic_scale=img_scale)
  57. test_pipeline = [
  58. dict(type='LoadImageFromFile'),
  59. dict(
  60. type='MultiScaleFlipAug',
  61. img_scale=img_scale,
  62. flip=False,
  63. transforms=[
  64. dict(type='Resize', keep_ratio=True),
  65. dict(type='RandomFlip'),
  66. dict(type='Pad', size_divisor=32),
  67. dict(type='Normalize', **img_norm_cfg),
  68. dict(type='DefaultFormatBundle'),
  69. dict(type='Collect', keys=['img'])
  70. ])
  71. ]
  72. data = dict(
  73. samples_per_gpu=8,
  74. workers_per_gpu=8,
  75. train=train_dataset,
  76. val=dict(
  77. type=dataset_type,
  78. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v4/dsxw_test/images/',
  79. classes=classes,
  80. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v4/dsxw_test/annotations/test.json',
  81. pipeline=test_pipeline),
  82. test=dict(
  83. type=dataset_type,
  84. img_prefix='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v4/dsxw_test/images/',
  85. classes=classes,
  86. ann_file='/home/shanwei-luo/userdata/datasets/dsxw_dataset_v4/dsxw_test/annotations/test.json',
  87. pipeline=test_pipeline))
  88. # optimizer
  89. # default 8 gpu
  90. optimizer = dict(
  91. type='SGD',
  92. lr=0.01,
  93. momentum=0.9,
  94. weight_decay=5e-4,
  95. nesterov=True,
  96. paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
  97. optimizer_config = dict(grad_clip=None)
  98. # learning policy
  99. lr_config = dict(
  100. _delete_=True,
  101. policy='YOLOX',
  102. warmup='exp',
  103. by_epoch=False,
  104. warmup_by_epoch=True,
  105. warmup_ratio=1,
  106. warmup_iters=5, # 5 epoch
  107. num_last_epochs=15,
  108. min_lr_ratio=0.05)
  109. runner = dict(type='EpochBasedRunner', max_epochs=60)
  110. resume_from = None
  111. interval = 5
  112. custom_hooks = [
  113. dict(type='YOLOXModeSwitchHook', num_last_epochs=15, priority=48),
  114. dict(
  115. type='SyncRandomSizeHook',
  116. ratio_range=(14, 26),
  117. img_scale=img_scale,
  118. priority=48),
  119. dict(
  120. type='SyncNormHook',
  121. num_last_epochs=15,
  122. interval=interval,
  123. priority=48),
  124. dict(type='ExpMomentumEMAHook', resume_from=resume_from, priority=49)
  125. ]
  126. checkpoint_config = dict(interval=interval)
  127. evaluation = dict(interval=interval, metric='bbox')
  128. log_config = dict(interval=50)

No Description

Contributors (3)