# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test""" import numpy as np from mindspore import context, Tensor import mindspore from mindspore.dataset.vision.py_transforms import ToTensor import mindspore.dataset.vision.py_transforms as P from FaceRecognition.eval import get_model import adversarial_attack context.set_context(mode=context.GRAPH_MODE, device_target="GPU") if __name__ == '__main__': image = adversarial_attack.load_data('photos/adv_input/') inputs = adversarial_attack.load_data('photos/input/') targets = adversarial_attack.load_data('photos/target/') tensorize = ToTensor() normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) expand_dims = mindspore.ops.ExpandDims() mean = Tensor([0.485, 0.456, 0.406]) std = Tensor([0.229, 0.224, 0.225]) resnet = get_model() adv = Tensor(normalize(tensorize(image[0]))) input_tensor = Tensor(normalize(tensorize(inputs[0]))) target_tensor = Tensor(normalize(tensorize(targets[0]))) adversarial_emb = resnet(expand_dims(adv, 0)) input_emb = resnet(expand_dims(input_tensor, 0)) target_emb = resnet(expand_dims(target_tensor, 0)) adversarial_index = np.argmax(adversarial_emb.asnumpy()) target_index = np.argmax(target_emb.asnumpy()) input_index = np.argmax(input_emb.asnumpy()) print("input_label:", input_index) print("The confidence of the input image on the input label:", input_emb.asnumpy()[0][input_index]) print("================================") print("adversarial_label:", adversarial_index) print("The confidence of the adversarial sample on the correct label:", adversarial_emb.asnumpy()[0][input_index]) print("The confidence of the adversarial sample on the adversarial label:", adversarial_emb.asnumpy()[0][adversarial_index]) print("input_label:%d, adversarial_label:%d" % (input_index, adversarial_index))