# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Training example of suppress-based privacy. """ import os import mindspore.nn as nn from mindspore import context from mindspore.train.callback import ModelCheckpoint from mindspore.train.callback import CheckpointConfig from mindspore.train.callback import LossMonitor from mindspore.nn.metrics import Accuracy import mindspore.dataset as ds import mindspore.dataset.vision.c_transforms as CV import mindspore.dataset.transforms.c_transforms as C from mindspore.dataset.vision.utils import Inter import mindspore.common.dtype as mstype from examples.common.networks.lenet5.lenet5_net import LeNet5 from sup_privacy_config import mnist_cfg as cfg from mindarmour.privacy.sup_privacy import SuppressModel from mindarmour.privacy.sup_privacy import SuppressMasker from mindarmour.privacy.sup_privacy import SuppressPrivacyFactory from mindarmour.privacy.sup_privacy import MaskLayerDes from mindarmour.utils.logger import LogUtil LOGGER = LogUtil.get_instance() LOGGER.set_level('INFO') TAG = 'Lenet5_Suppress_train' def generate_mnist_dataset(data_path, batch_size=32, repeat_size=1, samples=None, num_parallel_workers=1, sparse=True): """ create dataset for training or testing """ # define dataset ds1 = ds.MnistDataset(data_path, num_samples=samples) # define operation parameters resize_height, resize_width = 32, 32 rescale = 1.0 / 255.0 shift = 0.0 # define map operations resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) rescale_op = CV.Rescale(rescale, shift) hwc2chw_op = CV.HWC2CHW() type_cast_op = C.TypeCast(mstype.int32) # apply map operations on images if not sparse: one_hot_enco = C.OneHot(10) ds1 = ds1.map(input_columns="label", operations=one_hot_enco, num_parallel_workers=num_parallel_workers) type_cast_op = C.TypeCast(mstype.float32) ds1 = ds1.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers) ds1 = ds1.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers) # apply DatasetOps buffer_size = 10000 ds1 = ds1.shuffle(buffer_size=buffer_size) ds1 = ds1.batch(batch_size, drop_remainder=True) ds1 = ds1.repeat(repeat_size) return ds1 def mnist_suppress_train(epoch_size=10, start_epoch=3, lr=0.05, samples=10000, mask_times=1000, sparse_thd=0.90, sparse_start=0.0, masklayers=None): """ local train by suppress-based privacy """ networks_l5 = LeNet5() suppress_ctrl_instance = SuppressPrivacyFactory().create(networks_l5, masklayers, policy="local_train", end_epoch=epoch_size, batch_num=(int)(samples/cfg.batch_size), start_epoch=start_epoch, mask_times=mask_times, lr=lr, sparse_end=sparse_thd, sparse_start=sparse_start) net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") net_opt = nn.SGD(networks_l5.trainable_params(), lr) config_ck = CheckpointConfig(save_checkpoint_steps=(int)(samples/cfg.batch_size), keep_checkpoint_max=10) # Create the SuppressModel model for training. model_instance = SuppressModel(network=networks_l5, loss_fn=net_loss, optimizer=net_opt, metrics={"Accuracy": Accuracy()}) model_instance.link_suppress_ctrl(suppress_ctrl_instance) # Create a Masker for Suppress training. The function of the Masker is to # enforce suppress operation while training. suppress_masker = SuppressMasker(model=model_instance, suppress_ctrl=suppress_ctrl_instance) mnist_path = "./MNIST_unzip/" #"../../MNIST_unzip/" ds_train = generate_mnist_dataset(os.path.join(mnist_path, "train"), batch_size=cfg.batch_size, repeat_size=1, samples=samples) ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", directory="./trained_ckpt_file/", config=config_ck) print("============== Starting SUPP Training ==============") model_instance.train(epoch_size, ds_train, callbacks=[ckpoint_cb, LossMonitor(), suppress_masker], dataset_sink_mode=False) print("============== Starting SUPP Testing ==============") ds_eval = generate_mnist_dataset(os.path.join(mnist_path, 'test'), batch_size=cfg.batch_size) acc = model_instance.eval(ds_eval, dataset_sink_mode=False) print("============== SUPP Accuracy: %s ==============", acc) suppress_ctrl_instance.print_paras() if __name__ == "__main__": # This configure can run in pynative mode context.set_context(mode=context.PYNATIVE_MODE, device_target=cfg.device_target) masklayers_lenet5 = [] # determine which layer should be masked masklayers_lenet5.append(MaskLayerDes("conv1.weight", 0, False, True, 10)) masklayers_lenet5.append(MaskLayerDes("conv2.weight", 1, False, True, 150)) masklayers_lenet5.append(MaskLayerDes("fc1.weight", 2, True, False, -1)) masklayers_lenet5.append(MaskLayerDes("fc2.weight", 4, True, False, -1)) masklayers_lenet5.append(MaskLayerDes("fc3.weight", 6, True, False, 50)) # do suppreess privacy train, with stronger privacy protection and better performance than Differential Privacy mnist_suppress_train(10, 3, 0.10, 60000, 1000, 0.95, 0.0, masklayers=masklayers_lenet5) # used