|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- # Dataset
-
- Dataset used: [COCO2017](<https://cocodataset.org/>)
-
- - Dataset size:19G
- - Train:18G,118000 images
- - Val:1G,5000 images
- - Annotations:241M,instances,captions,person_keypoints etc
- - Data format:image and json files
- - Note:Data will be processed in dataset.py
-
- # Environment Requirements
-
- - Install [MindSpore](https://www.mindspore.cn/install/en).
-
- - Download the dataset COCO2017.
-
- - We use COCO2017 as dataset in this example.
-
- Install Cython and pycocotool, and you can also install mmcv to process data.
-
- ```
- pip install Cython
-
- pip install pycocotools
-
- pip install mmcv==0.2.14
- ```
-
- And change the COCO_ROOT and other settings you need in `config.py`. The directory structure is as follows:
-
- ```
- .
- └─cocodataset
- ├─annotations
- ├─instance_train2017.json
- └─instance_val2017.json
- ├─val2017
- └─train2017
- ```
-
- # Quick start
- You can download the pre-trained model checkpoint file [here](<https://www.mindspore.cn/resources/hub/details?2505/MindSpore/ascend/0.7/fasterrcnn_v1.0_coco2017>).
- ```
- python coco_attack_pgd.py --pre_trained [PRETRAINED_CHECKPOINT_FILE]
- ```
- > Adversarial samples will be generated and saved as pickle file.
|