You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

concept_drift_check_images_lenet.py 2.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. import numpy as np
  15. from mindspore import Tensor
  16. from mindspore.train.model import Model
  17. from mindspore import Model, nn, context
  18. from examples.common.networks.lenet5.lenet5_net_for_fuzzing import LeNet5
  19. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  20. from mindarmour.reliability.concept_drift.concept_drift_check_images import OodDetectorFeatureCluster
  21. """
  22. Examples for Lenet.
  23. """
  24. if __name__ == '__main__':
  25. # load model
  26. ckpt_path = '../../tests/ut/python/dataset/trained_ckpt_file/checkpoint_lenet-10_1875.ckpt'
  27. net = LeNet5()
  28. load_dict = load_checkpoint(ckpt_path)
  29. load_param_into_net(net, load_dict)
  30. model = Model(net)
  31. # load data
  32. ds_train = np.load('../../tests/ut/python/dataset/concept_train_lenet.npy')
  33. ds_eval = np.load('../../tests/ut/python/dataset/concept_test_lenet1.npy')
  34. ds_test = np.load('../../tests/ut/python/dataset/concept_test_lenet2.npy')
  35. # ood detector initialization
  36. detector = OodDetectorFeatureCluster(model, ds_train, n_cluster=10, layer='output[:Tensor]')
  37. # get optimal threshold with ds_eval
  38. num = int(len(ds_eval) / 2)
  39. label = np.concatenate((np.zeros(num), np.ones(num)), axis=0) # ID data = 0, OOD data = 1
  40. optimal_threshold = detector.get_optimal_threshold(label, ds_eval)
  41. # get result of ds_test2. We can also set threshold by ourselves.
  42. result = detector.ood_predict(optimal_threshold, ds_test)

MindArmour关注AI的安全和隐私问题。致力于增强模型的安全可信、保护用户的数据隐私。主要包含3个模块:对抗样本鲁棒性模块、Fuzz Testing模块、隐私保护与评估模块。 对抗样本鲁棒性模块 对抗样本鲁棒性模块用于评估模型对于对抗样本的鲁棒性,并提供模型增强方法用于增强模型抗对抗样本攻击的能力,提升模型鲁棒性。对抗样本鲁棒性模块包含了4个子模块:对抗样本的生成、对抗样本的检测、模型防御、攻防评估。