You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

op_task.cc 47 kB

5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/task/op_task.h"
  17. #include <google/protobuf/extension_set.h>
  18. #include <chrono>
  19. #include <thread>
  20. #include "aicpu/common/aicpu_task_struct.h"
  21. #include "common/dump/dump_manager.h"
  22. #include "common/dump/dump_op.h"
  23. #include "common/profiling/profiling_manager.h"
  24. #include "common/formats/formats.h"
  25. #include "common/math/math_util.h"
  26. #include "framework/common/debug/log.h"
  27. #include "runtime/rt.h"
  28. #include "single_op/task/build_task_utils.h"
  29. namespace ge {
  30. namespace {
  31. constexpr int kLaunchRetryTimes = 1000;
  32. constexpr size_t kMemcpyArgCount = 2;
  33. constexpr int kSleepTime = 10;
  34. constexpr uint64_t kReleaseFlag = 1;
  35. constexpr int kCopyNum = 2;
  36. constexpr uint64_t kInferSessionId = 0;
  37. void FreeHbm(void *var) {
  38. if (var) {
  39. (void)rtFree(var);
  40. }
  41. }
  42. } // namespace
  43. Status OpTask::OpenDump(rtStream_t stream) {
  44. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  45. GELOGI("Dump is open in single op, start to set dump info");
  46. std::vector<uint64_t> input_addrs;
  47. std::vector<uint64_t> output_adds;
  48. auto input_size = op_desc_->GetInputsSize();
  49. auto output_size = op_desc_->GetOutputsSize();
  50. uintptr_t *arg_base = nullptr;
  51. size_t arg_num = 0;
  52. GetIoAddr(arg_base, arg_num);
  53. if (arg_num < input_size + output_size) {
  54. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  55. "[Check][Size]io_addrs_for_dump_ size %zu is not equal input and output size %zu",
  56. arg_num, input_size + output_size);
  57. REPORT_INNER_ERROR("E19999", "io_addrs_for_dump_ size %zu is not equal input and output size %zu",
  58. arg_num, input_size + output_size);
  59. return ACL_ERROR_GE_INTERNAL_ERROR;
  60. }
  61. for (size_t i = 0; i < input_size; i++) {
  62. uint64_t input_addr = arg_base[i];
  63. input_addrs.emplace_back(input_addr);
  64. }
  65. for (size_t j = 0; j < output_size; j++) {
  66. uint64_t output_addr = arg_base[input_size + j];
  67. output_adds.emplace_back(output_addr);
  68. }
  69. dump_op_.SetDumpInfo(DumpManager::GetInstance().GetDumpProperties(kInferSessionId),
  70. op_desc_, input_addrs, output_adds, stream);
  71. auto status = dump_op_.LaunchDumpOp();
  72. if (status != SUCCESS) {
  73. GELOGE(status, "[Launch][DumpOp] failed in single op.");
  74. return status;
  75. }
  76. return SUCCESS;
  77. }
  78. GELOGI("Dump is not open in single op");
  79. return SUCCESS;
  80. }
  81. void TbeOpTask::SetStubFunc(const std::string &name, const void *stub_func) {
  82. this->stub_name_ = name;
  83. this->stub_func_ = stub_func;
  84. this->task_name_ = name;
  85. }
  86. void TbeOpTask::SetKernelArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
  87. const OpDescPtr &op_desc) {
  88. args_ = std::move(args);
  89. arg_size_ = arg_size;
  90. block_dim_ = block_dim;
  91. op_desc_ = op_desc;
  92. }
  93. void TbeOpTask::SetKernelWithHandleArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
  94. const OpDescPtr &op_desc,
  95. const domi::KernelDefWithHandle &kernel_def_with_handle) {
  96. SetKernelArgs(std::move(args), arg_size, block_dim, op_desc);
  97. original_kernel_key_ = kernel_def_with_handle.original_kernel_key();
  98. node_info_ = kernel_def_with_handle.node_info();
  99. }
  100. void TbeOpTask::SetSmDesc(void *sm_desc) { sm_desc_ = sm_desc; }
  101. void OpTask::SetModelArgs(std::string model_name, uint32_t model_id) {
  102. model_name_ = model_name;
  103. model_id_ = model_id;
  104. }
  105. Status OpTask::GetProfilingArgs(TaskDescInfo &task_desc_info, uint32_t &model_id) {
  106. uint32_t task_id = 0;
  107. uint32_t stream_id = 0;
  108. auto rt_ret = rtGetTaskIdAndStreamID(&task_id, &stream_id);
  109. if (rt_ret != RT_ERROR_NONE) {
  110. GELOGE(RT_FAILED, "[Get][TaskIdAndStreamID] failed, ret: 0x%X.", rt_ret);
  111. REPORT_CALL_ERROR("E19999", "rtGetTaskIdAndStreamID failed, ret: 0x%X.", rt_ret);
  112. return RT_ERROR_TO_GE_STATUS(rt_ret);
  113. }
  114. GE_CHECK_NOTNULL(op_desc_);
  115. string op_name = op_desc_->GetName();
  116. GELOGD("Get profiling args of op [%s] end, task_id[%u], stream_id[%u].", op_name.c_str(), task_id, stream_id);
  117. model_id = model_id_;
  118. task_desc_info.model_name = model_name_;
  119. task_desc_info.block_dim = block_dim_;
  120. task_desc_info.task_id = task_id;
  121. task_desc_info.stream_id = stream_id;
  122. task_desc_info.op_name = op_name;
  123. task_desc_info.op_type = op_desc_->GetType();
  124. auto &prof_mgr = ProfilingManager::Instance();
  125. prof_mgr.GetOpInputOutputInfo(op_desc_, task_desc_info);
  126. return SUCCESS;
  127. }
  128. Status OpTask::UpdateRunInfo() {
  129. return UNSUPPORTED;
  130. }
  131. Status OpTask::DoUpdateArgTable(const SingleOpModelParam &param, bool keep_workspace) {
  132. auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param, keep_workspace);
  133. auto all_addresses = BuildTaskUtils::JoinAddresses(addresses);
  134. uintptr_t *arg_base = nullptr;
  135. size_t arg_num = 0;
  136. GetIoAddr(arg_base, arg_num);
  137. if (arg_num < all_addresses.size()) {
  138. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  139. "[Check][Size][%s] arg number mismatches, expect at least = %zu, but got = %zu.",
  140. op_desc_->GetName().c_str(), all_addresses.size(), arg_num);
  141. REPORT_INNER_ERROR("E19999", "%s arg number mismatches, expect at least = %zu, but got = %zu.",
  142. op_desc_->GetName().c_str(), all_addresses.size(), arg_num);
  143. return ACL_ERROR_GE_INTERNAL_ERROR;
  144. }
  145. for (void *addr : all_addresses) {
  146. *arg_base++ = reinterpret_cast<uintptr_t >(addr);
  147. }
  148. return SUCCESS;
  149. }
  150. Status OpTask::UpdateArgTable(const SingleOpModelParam &param) {
  151. return DoUpdateArgTable(param, true);
  152. }
  153. Status OpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
  154. const vector<DataBuffer> &input_buffers,
  155. vector<GeTensorDesc> &output_desc,
  156. vector<DataBuffer> &output_buffers,
  157. rtStream_t stream) {
  158. return UNSUPPORTED;
  159. }
  160. const std::string &OpTask::GetTaskType() const { return kTaskTypeInvalid; }
  161. TbeOpTask::~TbeOpTask() {
  162. if (sm_desc_ != nullptr) {
  163. (void)rtMemFreeManaged(sm_desc_);
  164. }
  165. if (tiling_buffer_ != nullptr) {
  166. (void)rtFree(tiling_buffer_);
  167. }
  168. }
  169. const void *TbeOpTask::GetArgs() const { return args_.get(); }
  170. size_t TbeOpTask::GetArgSize() const { return arg_size_; }
  171. const std::string &TbeOpTask::GetStubName() const { return stub_name_; }
  172. const std::string &TbeOpTask::GetTaskType() const { return kTaskTypeAicore; }
  173. void TbeOpTask::SetHandle(void *handle) {
  174. this->handle_ = handle;
  175. }
  176. Status TbeOpTask::LaunchKernel(rtStream_t stream) {
  177. GELOGD("To invoke rtKernelLaunch. task = %s, block_dim = %u", this->stub_name_.c_str(), block_dim_);
  178. auto ret = DoLaunchKernel(stream);
  179. int retry_times = 0;
  180. while (ret != RT_ERROR_NONE && retry_times < kLaunchRetryTimes) {
  181. retry_times++;
  182. GELOGW("Retry after %d ms, retry_times: %d", kSleepTime, retry_times);
  183. std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTime));
  184. ret = DoLaunchKernel(stream);
  185. }
  186. if (ret != RT_ERROR_NONE) {
  187. GELOGE(ret, "[Invoke][RtKernelLaunch] failed. ret = %d, task = %s", ret, this->stub_name_.c_str());
  188. REPORT_INNER_ERROR("E19999", "invoke rtKernelLaunch failed, ret = %d, task = %s", ret, this->stub_name_.c_str());
  189. return RT_ERROR_TO_GE_STATUS(ret);
  190. }
  191. GELOGI("[TASK_INFO] %s", this->stub_name_.c_str());
  192. return SUCCESS;
  193. }
  194. Status TbeOpTask::CalcTilingInfo(optiling::utils::OpRunInfo &run_info) {
  195. auto ret = optiling::OpParaCalculateV2(*node_, run_info);
  196. if (ret != GRAPH_SUCCESS) {
  197. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Invoke][OpParaCalculate] failed, ret = %u.", ret);
  198. REPORT_INNER_ERROR("E19999", "invoke OpParaCalculate failed, ret = %u.", ret);
  199. return ACL_ERROR_GE_INTERNAL_ERROR;
  200. }
  201. return SUCCESS;
  202. }
  203. Status TbeOpTask::UpdateRunInfo() {
  204. // invoke OpParaCalculate
  205. GELOGD("Start to invoke OpParaCalculate.");
  206. optiling::utils::OpRunInfo run_info(0, true, 0);
  207. GE_CHK_STATUS_RET(CalcTilingInfo(run_info), "[Calc][TilingInfo]failed.");
  208. block_dim_ = run_info.GetBlockDim();
  209. tiling_data_ = run_info.GetAllTilingData().str();
  210. tiling_key_ = run_info.GetTilingKey();
  211. clear_atomic_ = run_info.GetClearAtomic();
  212. run_info.GetAllWorkspaces(run_info_workspaces_);
  213. GELOGD("Done invoking OpParaCalculate successfully. block_dim = %u, tiling size = %zu, tiling_key = %u", block_dim_,
  214. tiling_data_.size(), tiling_key_);
  215. return SUCCESS;
  216. }
  217. Status TbeOpTask::UpdateTensorDesc(const GeTensorDesc &src_tensor, GeTensorDesc &dst_tensor) {
  218. int64_t storage_format_val = static_cast<Format>(FORMAT_RESERVED);
  219. (void)AttrUtils::GetInt(src_tensor, ge::ATTR_NAME_STORAGE_FORMAT, storage_format_val);
  220. auto storage_format = static_cast<Format>(storage_format_val);
  221. if (storage_format == FORMAT_RESERVED) {
  222. GELOGD("Storage format not set. update shape to [%s], and original shape to [%s]",
  223. src_tensor.GetShape().ToString().c_str(), src_tensor.GetOriginShape().ToString().c_str());
  224. dst_tensor.SetShape(src_tensor.GetShape());
  225. dst_tensor.SetOriginShape(src_tensor.GetOriginShape());
  226. } else {
  227. std::vector<int64_t> storage_shape;
  228. if (!AttrUtils::GetListInt(src_tensor, ge::ATTR_NAME_STORAGE_SHAPE, storage_shape)) {
  229. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ListInt]failed while storage_format was set.");
  230. return ACL_ERROR_GE_INTERNAL_ERROR;
  231. }
  232. GELOGD("Storage format set. update shape to [%s], and original shape to [%s]",
  233. GeShape(storage_shape).ToString().c_str(), src_tensor.GetShape().ToString().c_str());
  234. dst_tensor.SetShape(GeShape(std::move(storage_shape)));
  235. dst_tensor.SetOriginShape(src_tensor.GetShape());
  236. }
  237. int64_t size = 0;
  238. graphStatus graph_status = TensorUtils::GetTensorMemorySizeInBytes(dst_tensor, size);
  239. if (graph_status != GRAPH_SUCCESS) {
  240. REPORT_CALL_ERROR("E19999", "Get tensor size in bytes failed!");
  241. GELOGE(graph_status, "[Get][TensorMemorySize] In Bytes failed!");
  242. return FAILED;
  243. }
  244. TensorUtils::SetSize(dst_tensor, size);
  245. return SUCCESS;
  246. }
  247. Status TbeOpTask::UpdateNodeByShape(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
  248. auto op_desc = node_->GetOpDesc();
  249. GE_CHECK_NOTNULL(op_desc);
  250. // Set runtime shape to node
  251. for (size_t i = 0; i < input_desc.size(); ++i) {
  252. auto tensor_desc = op_desc->MutableInputDesc(i);
  253. auto &runtime_tensor_desc = input_desc[i];
  254. GE_CHECK_NOTNULL(tensor_desc);
  255. GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
  256. }
  257. for (size_t i = 0; i < output_desc.size(); ++i) {
  258. auto tensor_desc = op_desc->MutableOutputDesc(i);
  259. auto &runtime_tensor_desc = output_desc[i];
  260. GE_CHECK_NOTNULL(tensor_desc);
  261. GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
  262. }
  263. return SUCCESS;
  264. }
  265. Status TbeOpTask::EnableDynamicSupport(const NodePtr &node, void *tiling_buffer, uint32_t max_tiling_size) {
  266. if (tiling_buffer != nullptr) {
  267. uintptr_t *arg_base = nullptr;
  268. size_t arg_num = 0;
  269. GetIoAddr(arg_base, arg_num);
  270. GE_CHECK_NOTNULL(node);
  271. GE_CHECK_NOTNULL(node->GetOpDesc());
  272. uint32_t inputs_num = node->GetOpDesc()->GetInputsSize();
  273. uint32_t outputs_num = node->GetOpDesc()->GetOutputsSize();
  274. uint32_t workspace_nums = node->GetOpDesc()->GetWorkspace().size();
  275. uint32_t tiling_index = inputs_num + outputs_num + workspace_nums;
  276. if (arg_num == 0 || arg_num < tiling_index) {
  277. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Size]Tiling index %u, arg number %zu is invalid.",
  278. tiling_index, arg_num);
  279. return ACL_ERROR_GE_INTERNAL_ERROR;
  280. }
  281. arg_base[tiling_index] = reinterpret_cast<uintptr_t>(tiling_buffer);
  282. }
  283. node_ = node;
  284. tiling_buffer_ = tiling_buffer;
  285. max_tiling_size_ = max_tiling_size;
  286. return SUCCESS;
  287. }
  288. Status TbeOpTask::AllocateWorkspaces(const vector<int64_t> &workspace_sizes) {
  289. static const std::string kPurpose("malloc workspace memory for dynamic op.");
  290. workspaces_.clear();
  291. if (workspace_sizes.empty()) {
  292. GELOGD("No need to allocate workspace.");
  293. return SUCCESS;
  294. }
  295. int64_t total_size = 0;
  296. std::vector<int64_t> ws_offsets;
  297. for (auto ws_size : workspace_sizes) {
  298. // alignment and padding should be done in OpParaCalculate
  299. if (CheckInt64AddOverflow(total_size, ws_size) != SUCCESS) {
  300. return ACL_ERROR_GE_INTERNAL_ERROR;
  301. }
  302. ws_offsets.emplace_back(total_size);
  303. total_size += ws_size;
  304. }
  305. GELOGD("Total workspace size is %ld", total_size);
  306. GE_CHECK_NOTNULL(stream_resource_);
  307. auto ws_base = stream_resource_->MallocMemory(kPurpose, static_cast<size_t>(total_size));
  308. if (ws_base == nullptr) {
  309. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Malloc][Memory] failed, size: %ld", total_size);
  310. REPORT_INNER_ERROR("E19999", "MallocMemory failed, size: %ld", total_size);
  311. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  312. }
  313. GELOGD("Done allocating workspace memory successfully.");
  314. for (auto ws_offset : ws_offsets) {
  315. workspaces_.emplace_back(ws_base + ws_offset);
  316. }
  317. return SUCCESS;
  318. }
  319. Status TbeOpTask::CheckAndExecuteAtomic(const vector<GeTensorDesc> &input_desc,
  320. const vector<DataBuffer> &input_buffers,
  321. vector<GeTensorDesc> &output_desc,
  322. vector<DataBuffer> &output_buffers,
  323. rtStream_t stream) {
  324. if (clear_atomic_ && atomic_task_ != nullptr) {
  325. return atomic_task_->LaunchKernel(input_desc, input_buffers, output_desc, output_buffers, stream);
  326. }
  327. return SUCCESS;
  328. }
  329. Status TbeOpTask::UpdateTilingArgs(rtStream_t stream) {
  330. size_t args_size = input_num_ + output_num_ + workspaces_.size();
  331. if (tiling_buffer_ != nullptr) {
  332. args_size++;
  333. }
  334. size_t temp_size = args_size * sizeof(void *);
  335. if (arg_size_ < temp_size) {
  336. GELOGD("Need to reset size of args_ from %zu to %zu.", arg_size_, temp_size);
  337. std::unique_ptr<uint8_t[]> args(new (std::nothrow) uint8_t[temp_size]());
  338. GE_CHECK_NOTNULL(args);
  339. if (memcpy_s(args.get(), temp_size, args_.get(), arg_size_) != EOK) {
  340. GELOGE(ACL_ERROR_GE_MEMORY_OPERATE_FAILED, "[Update][KernelArgs] failed for [%s].", node_->GetName().c_str());
  341. REPORT_INNER_ERROR("E19999", "update kernel args failed for %s.", node_->GetName().c_str());
  342. return ACL_ERROR_GE_MEMORY_OPERATE_FAILED;
  343. }
  344. args_ = std::move(args);
  345. arg_size_ = temp_size;
  346. }
  347. uintptr_t *arg_base = reinterpret_cast<uintptr_t *>(args_.get());
  348. size_t arg_index = input_num_ + output_num_;
  349. for (size_t i = 0; i < workspaces_.size(); ++i) {
  350. arg_base[arg_index++] = reinterpret_cast<uintptr_t>(workspaces_[i]);
  351. }
  352. if (tiling_buffer_ != nullptr) {
  353. GELOGD("[%s] Start to copy tiling info. size = %zu", node_->GetName().c_str(), tiling_data_.size());
  354. GE_CHK_RT_RET(rtMemcpyAsync(tiling_buffer_, max_tiling_size_, tiling_data_.data(), tiling_data_.size(),
  355. RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
  356. arg_base[arg_index] = reinterpret_cast<uintptr_t>(tiling_buffer_);
  357. }
  358. return SUCCESS;
  359. }
  360. Status TbeOpTask::SetArgIndex() {
  361. const vector<bool> v_is_input_const = op_desc_->GetIsInputConst();
  362. size_t input_index = 0;
  363. for (size_t i = 0; i < op_desc_->GetAllInputsSize(); ++i) {
  364. const GeTensorDescPtr tensor_desc = op_desc_->MutableInputDesc(static_cast<uint32_t>(i));
  365. if (tensor_desc == nullptr) {
  366. GELOGD("SingleOp: %s, Index: %zu, has no input", op_desc_->GetName().c_str(), i);
  367. continue;
  368. }
  369. if (i < v_is_input_const.size() && v_is_input_const[i]) {
  370. GELOGD("SingleOp: %s, Index: %zu, input is const", op_desc_->GetName().c_str(), i);
  371. input_index++;
  372. continue;
  373. }
  374. arg_index_.emplace_back(input_index);
  375. input_index++;
  376. }
  377. return SUCCESS;
  378. }
  379. Status TbeOpTask::UpdateIoAddr(const vector<DataBuffer> &inputs, const vector<DataBuffer> &outputs) {
  380. if (arg_index_.size() != inputs.size()) {
  381. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Size] Args size is %zu, but get input size is %zu.",
  382. arg_index_.size(), inputs.size());
  383. REPORT_INNER_ERROR("E19999", "[Check][Size] Args size is %zu, but get input size is %zu.",
  384. arg_index_.size(), inputs.size());
  385. return ACL_ERROR_GE_PARAM_INVALID;
  386. }
  387. uintptr_t *arg_base = reinterpret_cast<uintptr_t *>(args_.get());
  388. for (size_t i = 0; i < arg_index_.size(); ++i) {
  389. arg_base[arg_index_[i]] = reinterpret_cast<uintptr_t>(inputs[i].data);
  390. }
  391. for (size_t i = 0; i < op_desc_->GetOutputsSize(); ++i) {
  392. arg_base[input_num_ + i] = reinterpret_cast<uintptr_t>(outputs[i].data);
  393. }
  394. return SUCCESS;
  395. }
  396. Status TbeOpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
  397. const vector<DataBuffer> &input_buffers,
  398. vector<GeTensorDesc> &output_desc,
  399. vector<DataBuffer> &output_buffers,
  400. rtStream_t stream) {
  401. GELOGD("[%s] Start to launch kernel", node_->GetName().c_str());
  402. GE_CHK_STATUS_RET(UpdateIoAddr(input_buffers, output_buffers), "[Update][IoAddr] failed.");
  403. GE_CHK_STATUS_RET_NOLOG(UpdateNodeByShape(input_desc, output_desc));
  404. GE_CHK_STATUS_RET_NOLOG(UpdateRunInfo());
  405. GE_CHK_STATUS_RET(AllocateWorkspaces(run_info_workspaces_), "[Allocate][Workspaces] failed.");
  406. GE_CHK_STATUS_RET(CheckAndExecuteAtomic(input_desc, input_buffers, output_desc, output_buffers, stream),
  407. "[Execute][AtomicTask] failed.");
  408. GE_CHK_STATUS_RET(UpdateTilingArgs(stream), "[Update][TilingArgs] failed.");
  409. GELOGD("[%s] Start to invoke rtKernelLaunch", node_->GetName().c_str());
  410. GE_CHK_STATUS_RET(DoLaunchKernel(stream), "Failed to do launch kernel.");
  411. return SUCCESS;
  412. }
  413. Status TbeOpTask::DoLaunchKernel(rtStream_t stream) {
  414. auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
  415. if (handle_ == nullptr) {
  416. GE_CHK_RT_RET(rtKernelLaunch(stub_func_, block_dim_, args_.get(), static_cast<uint32_t>(arg_size_),
  417. sm_desc, stream));
  418. } else {
  419. std::string dev_func = original_kernel_key_ + "_" + std::to_string(tiling_key_);
  420. std::string kernel_info = node_info_ + "/" + std::to_string(tiling_key_);
  421. GE_CHK_RT_RET(rtKernelLaunchWithHandle(handle_, dev_func.c_str(), block_dim_, args_.get(),
  422. static_cast<uint32_t>(arg_size_), sm_desc, stream, kernel_info.c_str()));
  423. }
  424. return SUCCESS;
  425. }
  426. void TbeOpTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  427. arg_base = reinterpret_cast<uintptr_t *>(args_.get());
  428. arg_count = arg_size_ / sizeof(void *);
  429. if (tiling_buffer_ != nullptr) {
  430. --arg_count;
  431. }
  432. }
  433. Status AtomicOpTask::UpdateIoAddr(const vector<DataBuffer> &inputs, const vector<DataBuffer> &outputs) {
  434. uintptr_t *arg_base = reinterpret_cast<uintptr_t *>(args_.get());
  435. for (auto atomic_output_index : atomic_output_indices_) {
  436. if (atomic_output_index >= static_cast<int>(outputs.size())) {
  437. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Update][Args] failed, atomic index must smaller then data size.");
  438. REPORT_INNER_ERROR("E19999", "[Update][Args] failed, atomic index must smaller then data size.");
  439. return ACL_ERROR_GE_PARAM_INVALID;
  440. }
  441. auto &output_buffer = outputs[atomic_output_index];
  442. *arg_base++ = reinterpret_cast<uintptr_t>(output_buffer.data);
  443. }
  444. return SUCCESS;
  445. }
  446. Status AtomicOpTask::UpdateTilingArgs(rtStream_t stream) {
  447. if (tiling_buffer_ != nullptr) {
  448. GELOGD("[%s] Start to copy tiling info. size = %zu", node_->GetName().c_str(), tiling_data_.size());
  449. GE_CHK_RT_RET(rtMemcpyAsync(tiling_buffer_, max_tiling_size_, tiling_data_.data(), tiling_data_.size(),
  450. RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
  451. uintptr_t *arg_base = reinterpret_cast<uintptr_t *>(args_.get());
  452. size_t idx = atomic_output_indices_.size();
  453. arg_base[idx] = reinterpret_cast<uintptr_t>(tiling_buffer_);
  454. }
  455. return SUCCESS;
  456. }
  457. Status AtomicOpTask::CalcTilingInfo(optiling::utils::OpRunInfo &run_info) {
  458. auto ret = optiling::OpAtomicCalculateV2(*node_, run_info);
  459. if (ret != GRAPH_SUCCESS) {
  460. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Invoke][OpAtomicCalculate] failed, ret = %u.", ret);
  461. REPORT_INNER_ERROR("E19999", "invoke OpAtomicCalculate failed, ret = %u.", ret);
  462. return ACL_ERROR_GE_INTERNAL_ERROR;
  463. }
  464. return SUCCESS;
  465. }
  466. Status AtomicOpTask::InitAtomicAddrCleanIndices() {
  467. GELOGD("[%s] Start to setup AtomicAddrClean task.", op_desc_->GetName().c_str());
  468. std::vector<int64_t> atomic_output_indices;
  469. (void) ge::AttrUtils::GetListInt(op_desc_, ATOMIC_ATTR_OUTPUT_INDEX, atomic_output_indices);
  470. if (atomic_output_indices.empty()) {
  471. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] atomic_output_indices must not be empty.", op_desc_->GetName().c_str());
  472. REPORT_INNER_ERROR("E19999", "[%s] atomic_output_indices must not be empty.", op_desc_->GetName().c_str());
  473. return INTERNAL_ERROR;
  474. }
  475. size_t max_arg_size = tiling_buffer_ == nullptr ? arg_size_ : arg_size_ - 1;
  476. if (atomic_output_indices.size() > max_arg_size) {
  477. GELOGE(INTERNAL_ERROR, "[Check][Size][%s] atomic_output_indices invalid. atomic_output_indices size is %zu,"
  478. "arg size is %zu.", op_desc_->GetName().c_str(), atomic_output_indices.size(), arg_size_);
  479. REPORT_INNER_ERROR("E19999", "[%s] atomic_output_indices invalid. atomic_output_indices size is %zu,"
  480. "arg size is %zu.", op_desc_->GetName().c_str(), atomic_output_indices.size(), arg_size_);
  481. return INTERNAL_ERROR;
  482. }
  483. for (auto output_index : atomic_output_indices) {
  484. GELOGD("[%s] Adding output index [%ld]", op_desc_->GetName().c_str(), output_index);
  485. GE_CHECK_GE(output_index, 0);
  486. GE_CHECK_LE(output_index, INT32_MAX);
  487. atomic_output_indices_.emplace_back(static_cast<int>(output_index));
  488. }
  489. return SUCCESS;
  490. }
  491. AiCpuBaseTask::~AiCpuBaseTask() {
  492. if (ext_info_addr_dev_ != nullptr) {
  493. (void)rtFree(ext_info_addr_dev_);
  494. }
  495. }
  496. Status AiCpuBaseTask::SetExtInfoAndType(const std::string &kernel_ext_info, uint64_t kernel_id) {
  497. if (kernel_ext_info.empty()) {
  498. GELOGI("Kernel_ext_info is empty, no need copy to device.");
  499. return SUCCESS;
  500. }
  501. int32_t unknown_shape_type_val = 0;
  502. (void) AttrUtils::GetInt(op_desc_, ::ge::ATTR_NAME_UNKNOWN_SHAPE_TYPE, unknown_shape_type_val);
  503. GELOGD("Get unknown_type is %d.", unknown_shape_type_val);
  504. unknown_type_ = static_cast<UnknowShapeOpType>(unknown_shape_type_val);
  505. aicpu_ext_handle_.reset(new(std::nothrow) ::ge::hybrid::AicpuExtInfoHandler(op_desc_->GetName(),
  506. num_inputs_,
  507. num_outputs_,
  508. unknown_type_));
  509. GE_CHK_BOOL_RET_STATUS(aicpu_ext_handle_ != nullptr, ACL_ERROR_GE_MEMORY_ALLOCATION,
  510. "[Malloc][Memory] failed for aicpu_ext_handle!");
  511. Status ret = aicpu_ext_handle_->Parse(kernel_ext_info);
  512. if (ret != SUCCESS) {
  513. GELOGE(ret, "[Parse][Param:kernel_ext_info] failed, kernel_ext_info_size=%zu.", kernel_ext_info.size());
  514. REPORT_INNER_ERROR("E19999",
  515. "Parse Param:kernel_ext_info failed, kernel_ext_info_size=%zu.", kernel_ext_info.size());
  516. return ret;
  517. }
  518. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateSessionInfo(ULLONG_MAX, kernel_id, false),
  519. "[Update][SessionInfo] failed.");
  520. GE_CHK_RT_RET(rtMalloc(&ext_info_addr_dev_, aicpu_ext_handle_->GetExtInfoLen(), RT_MEMORY_HBM));
  521. GE_CHK_RT_RET(rtMemcpy(ext_info_addr_dev_, aicpu_ext_handle_->GetExtInfoLen(),
  522. aicpu_ext_handle_->GetExtInfo(), aicpu_ext_handle_->GetExtInfoLen(),
  523. RT_MEMCPY_HOST_TO_DEVICE));
  524. return SUCCESS;
  525. }
  526. Status AiCpuBaseTask::SetInputConst() {
  527. input_is_const_.clear();
  528. const vector<bool> v_is_input_const = op_desc_->GetIsInputConst();
  529. for (size_t i = 0; i < op_desc_->GetAllInputsSize(); ++i) {
  530. const GeTensorDescPtr tensor_desc = op_desc_->MutableInputDesc(static_cast<uint32_t>(i));
  531. if (tensor_desc == nullptr) {
  532. GELOGD("SingleOp: %s, Index: %zu, has no input", op_desc_->GetName().c_str(), i);
  533. continue;
  534. }
  535. if (i < v_is_input_const.size() && v_is_input_const[i]) {
  536. GELOGD("SingleOp: %s, Index: %zu, input is const", op_desc_->GetName().c_str(), i);
  537. input_is_const_.push_back(true);
  538. continue;
  539. }
  540. input_is_const_.push_back(false);
  541. }
  542. return SUCCESS;
  543. }
  544. Status AiCpuBaseTask::UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc,
  545. std::vector<GeTensorDesc> &output_desc,
  546. rtStream_t stream) {
  547. GELOGI("Update ext info begin, unknown_type=%d.", unknown_type_);
  548. GE_CHECK_NOTNULL(aicpu_ext_handle_);
  549. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateExecuteMode(false), "[Update][ExecuteMode] failed.");
  550. if (num_inputs_ == 0 && num_outputs_ == 0) {
  551. GELOGI("No input and output, no need update ext info.");
  552. return SUCCESS;
  553. }
  554. size_t non_const_index = 0;
  555. for (size_t input_index = 0; input_index < num_inputs_; input_index++) {
  556. if (input_index < input_is_const_.size() && input_is_const_[input_index]) {
  557. // get input_desc from op_desc if const input, num_inputs_ is op_desc_ input_size
  558. auto const_input_desc = op_desc_->MutableInputDesc(static_cast<uint32_t>(input_index));
  559. GE_CHECK_NOTNULL(const_input_desc);
  560. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(input_index, *const_input_desc),
  561. "[Update][InputShapeAndType] failed, input_index:%zu.", input_index);
  562. continue;
  563. }
  564. GE_CHK_BOOL_RET_STATUS(non_const_index < input_desc.size(), ACL_ERROR_GE_PARAM_INVALID,
  565. "[Check][Size]Input_desc size is %zu, but get non_const_index is %zu", input_desc.size(), non_const_index);
  566. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(input_index, input_desc[non_const_index]),
  567. "[Update][InputShapeAndType]failed, input_index:%zu.", input_index);
  568. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  569. GE_CHK_STATUS_RET(op_desc_->UpdateInputDesc(input_index, input_desc[non_const_index]),
  570. "AiCpuTask Update [%zu]th input desc failed.",input_index);
  571. }
  572. non_const_index++;
  573. }
  574. if (unknown_type_ != DEPEND_COMPUTE) {
  575. for (size_t j = 0; j < num_outputs_; ++j) {
  576. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateOutputShapeAndType(j, output_desc[j]),
  577. "[Update][OutputShapeAndType] failed, Output:%zu.", j);
  578. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  579. GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(j, output_desc[j]),
  580. "AiCpuTask Update [%zu]th output desc failed.",j);
  581. }
  582. }
  583. }
  584. GE_CHK_RT_RET(rtMemcpyAsync(ext_info_addr_dev_,
  585. aicpu_ext_handle_->GetExtInfoLen(), // check size
  586. aicpu_ext_handle_->GetExtInfo(),
  587. aicpu_ext_handle_->GetExtInfoLen(),
  588. RT_MEMCPY_HOST_TO_DEVICE_EX,
  589. stream));
  590. GELOGI("Update ext info end.");
  591. return SUCCESS;
  592. }
  593. Status AiCpuBaseTask::UpdateOutputShape(vector<GeTensorDesc> &output_desc) {
  594. if (num_outputs_ == 0) {
  595. GELOGD("AiCpuBaseTask output_num is 0, no need update output shape.");
  596. return SUCCESS;
  597. }
  598. GELOGD("Start to update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape.");
  599. GE_CHK_RT_RET(rtMemcpy(aicpu_ext_handle_->GetExtInfo(), aicpu_ext_handle_->GetExtInfoLen(), ext_info_addr_dev_,
  600. aicpu_ext_handle_->GetExtInfoLen(), RT_MEMCPY_DEVICE_TO_HOST));
  601. for (size_t i = 0; i < num_outputs_; ++i) {
  602. GeShape shape;
  603. DataType data_type;
  604. aicpu_ext_handle_->GetOutputShapeAndType(i, shape, data_type);
  605. GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(shape, output_desc[i]),
  606. "[Update][ShapeToOutputDesc] failed, output:%zu.", i);
  607. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  608. GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(i, output_desc[i]), "[Update][OutputDesc] failed, output:%zu.", i);
  609. }
  610. }
  611. GELOGD("Update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape finished.");
  612. return SUCCESS;
  613. }
  614. Status AiCpuBaseTask::UpdateShapeToOutputDesc(const GeShape &shape_new, GeTensorDesc &output_desc) {
  615. auto shape_old = output_desc.GetShape();
  616. output_desc.SetShape(shape_new);
  617. GELOGD("Update AiCpuBaseTask shape from %s to %s", shape_old.ToString().c_str(), shape_new.ToString().c_str());
  618. auto origin_shape_old = output_desc.GetOriginShape();
  619. auto origin_format = output_desc.GetOriginFormat();
  620. auto format = output_desc.GetFormat();
  621. if (origin_format == format) {
  622. output_desc.SetOriginShape(shape_new);
  623. return SUCCESS;
  624. }
  625. std::vector<int64_t> origin_dims_new;
  626. auto trans_ret = formats::TransShape(format, shape_new.GetDims(),
  627. output_desc.GetDataType(), origin_format, origin_dims_new);
  628. GE_CHK_STATUS_RET(trans_ret,
  629. "[Trans][Shape] failed, AiCpuTask originFormat[%d] is not same as format[%d], shape=%s.",
  630. origin_format, format, shape_new.ToString().c_str());
  631. auto origin_shape_new = GeShape(origin_dims_new);
  632. output_desc.SetOriginShape(origin_shape_new);
  633. GELOGD("AiCpuTask originFormat[%d] is not same as format[%d], need update from %s ro %s.",
  634. origin_format, format, origin_shape_old.ToString().c_str(), origin_shape_new.ToString().c_str());
  635. return SUCCESS;
  636. }
  637. Status AiCpuBaseTask::UpdateIoAddr(const vector<DataBuffer> &inputs, const vector<DataBuffer> &outputs) {
  638. uintptr_t *arg_base = nullptr;
  639. size_t arg_num = 0;
  640. GetIoAddr(arg_base, arg_num);
  641. // input number and output number was check in ValidateParams
  642. size_t non_const_index = 0;
  643. for (size_t input_index = 0; input_index < num_inputs_; input_index++) {
  644. if (input_index < input_is_const_.size() && input_is_const_[input_index]) {
  645. // const input no need update addr
  646. GE_CHECK_NOTNULL(arg_base);
  647. GELOGD("AICpuTask input[%zu] addr = %lu", input_index, *arg_base);
  648. arg_base++;
  649. continue;
  650. }
  651. GE_CHK_BOOL_RET_STATUS(non_const_index < inputs.size(), ACL_ERROR_GE_PARAM_INVALID,
  652. "[Check][Size] Input size is %zu, but get non_const_index is %zu", inputs.size(), non_const_index);
  653. auto addr = inputs[non_const_index].data;
  654. GE_CHECK_NOTNULL(addr);
  655. GELOGD("AICpuTask input[%zu] addr = %p", input_index, addr);
  656. *arg_base++ = reinterpret_cast<uintptr_t>(addr);
  657. non_const_index++;
  658. }
  659. for (size_t i = 0; i < outputs.size(); ++i) {
  660. auto addr = outputs[i].data;
  661. GE_CHECK_NOTNULL(addr);
  662. GELOGD("AICpuTask output[%zu] addr = %p", i, addr);
  663. *arg_base++ = reinterpret_cast<uintptr_t>(addr);
  664. }
  665. return SUCCESS;
  666. }
  667. AiCpuTask::~AiCpuTask() {
  668. FreeHbm(args_);
  669. FreeHbm(io_addr_);
  670. FreeHbm(workspace_addr_);
  671. FreeHbm(copy_workspace_buf_);
  672. FreeHbm(copy_ioaddr_dev_);
  673. FreeHbm(copy_input_release_flag_dev_);
  674. FreeHbm(copy_input_data_size_dev_);
  675. FreeHbm(copy_input_src_dev_);
  676. FreeHbm(copy_input_dst_dev_);
  677. FreeHbm(copy_task_args_buf_);
  678. for (auto summary : output_summary_) {
  679. FreeHbm(summary);
  680. }
  681. for (auto out_shape : out_shape_hbm_) {
  682. FreeHbm(out_shape);
  683. }
  684. }
  685. Status AiCpuTask::LaunchKernel(rtStream_t stream) {
  686. GELOGD("Start to launch kernel. task = %s", this->op_type_.c_str());
  687. auto ret = rtMemcpyAsync(io_addr_,
  688. io_addr_size_,
  689. io_addr_host_.data(),
  690. io_addr_host_.size() * sizeof(void *),
  691. RT_MEMCPY_HOST_TO_DEVICE_EX,
  692. stream);
  693. if (ret != RT_ERROR_NONE) {
  694. GELOGE(ret, "[MemcpyAsync][Date] failed. ret = %d, task = %s", ret, this->op_type_.c_str());
  695. REPORT_CALL_ERROR("E19999", "rtMemcpyAsync data failed, ret = %d, task = %s", ret, this->op_type_.c_str());
  696. return RT_ERROR_TO_GE_STATUS(ret);
  697. }
  698. GELOGI("To invoke rtKernelLaunchEx. task = %s", this->op_type_.c_str());
  699. ret = rtKernelLaunchEx(args_, arg_size_, 0, stream);
  700. if (ret != RT_ERROR_NONE) {
  701. GELOGE(ret, "[Invoke][rtKernelLaunch] failed. ret = %d, task = %s", ret, this->op_type_.c_str());
  702. REPORT_CALL_ERROR("E19999", "invoke rtKernelLaunchEx failed, ret = %d, task = %s", ret, this->op_type_.c_str());
  703. return RT_ERROR_TO_GE_STATUS(ret);
  704. }
  705. GELOGI("[TASK_INFO] %lu/%s", kernel_id_, op_type_.c_str());
  706. GELOGD("Done launch kernel successfully. task = %s", this->op_type_.c_str());
  707. return SUCCESS;
  708. }
  709. Status AiCpuTask::PrepareCopyInputs(vector<DataBuffer> &outputs) {
  710. std::vector<uint64_t> copy_input_release_flag;
  711. std::vector<uint64_t> copy_input_data_size;
  712. std::vector<uint64_t> copy_input_src;
  713. std::vector<uint64_t> copy_input_dst;
  714. for (size_t i = 0; i < num_outputs_; ++i) {
  715. const auto &summary = output_summary_host_[i];
  716. GELOGI("Node out[%zu] summary, shape data=0x%lx, shape data size=%lu, raw data=0x%lx, raw data size=%lu.",
  717. i, summary.shape_data_ptr, summary.shape_data_size,
  718. summary.raw_data_ptr, summary.raw_data_size);
  719. auto output = outputs[i];
  720. copy_input_release_flag.emplace_back(kReleaseFlag);
  721. if (summary.raw_data_size > 0) {
  722. copy_input_data_size.emplace_back(output.length);
  723. } else {
  724. copy_input_data_size.emplace_back(summary.raw_data_size);
  725. }
  726. copy_input_src.emplace_back(summary.raw_data_ptr);
  727. copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(output.data));
  728. const auto &shape_buffer = out_shape_hbm_[i];
  729. copy_input_release_flag.emplace_back(kReleaseFlag);
  730. copy_input_data_size.emplace_back(summary.shape_data_size);
  731. copy_input_src.emplace_back(summary.shape_data_ptr);
  732. copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(shape_buffer));
  733. }
  734. const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
  735. GE_CHK_RT_RET(rtMemcpy(copy_input_release_flag_dev_, copy_input_buf_len,
  736. copy_input_release_flag.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  737. GE_CHK_RT_RET(rtMemcpy(copy_input_data_size_dev_, copy_input_buf_len,
  738. copy_input_data_size.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  739. GE_CHK_RT_RET(rtMemcpy(copy_input_src_dev_, copy_input_buf_len,
  740. copy_input_src.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  741. GE_CHK_RT_RET(rtMemcpy(copy_input_dst_dev_, copy_input_buf_len,
  742. copy_input_dst.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  743. return SUCCESS;
  744. }
  745. Status AiCpuTask::ReadResultSummaryAndPrepareMemory() {
  746. for (size_t i = 0; i < num_outputs_; ++i) {
  747. auto &result_summary = output_summary_host_[i];
  748. GE_CHK_RT_RET(rtMemcpy(&result_summary, sizeof(aicpu::FWKAdapter::ResultSummary),
  749. output_summary_[i], sizeof(aicpu::FWKAdapter::ResultSummary),
  750. RT_MEMCPY_DEVICE_TO_HOST));
  751. auto shape_data_size = result_summary.shape_data_size;
  752. void *shape_buffer = nullptr;
  753. if (shape_data_size > 0) {
  754. GE_CHK_RT_RET(rtMalloc(&shape_buffer, shape_data_size, RT_MEMORY_HBM));
  755. }
  756. out_shape_hbm_.emplace_back(shape_buffer);
  757. }
  758. return SUCCESS;
  759. }
  760. Status AiCpuTask::CopyDataToHbm(vector<DataBuffer> &outputs,
  761. rtStream_t stream) {
  762. GE_CHK_STATUS_RET_NOLOG(PrepareCopyInputs(outputs));
  763. GE_CHK_RT_RET(rtKernelLaunchEx(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
  764. RT_KERNEL_DEFAULT, stream));
  765. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  766. return SUCCESS;
  767. }
  768. Status AiCpuTask::UpdateShapeByHbmBuffer(vector<GeTensorDesc> &output_desc) {
  769. for (size_t i = 0; i < num_outputs_; ++i) {
  770. const auto &result_summary = output_summary_host_[i];
  771. std::vector<int64_t> shape_dims;
  772. if (result_summary.shape_data_size > 0) {
  773. const auto &shape_hbm = out_shape_hbm_[i];
  774. uint32_t dim_num = result_summary.shape_data_size / sizeof(int64_t);
  775. std::unique_ptr<int64_t[]> shape_addr(new (std::nothrow) int64_t[dim_num]());
  776. GE_CHECK_NOTNULL(shape_addr);
  777. GE_CHK_RT_RET(rtMemcpy(shape_addr.get(), result_summary.shape_data_size, shape_hbm,
  778. result_summary.shape_data_size, RT_MEMCPY_DEVICE_TO_HOST));
  779. for (uint32_t dim_idx = 0; dim_idx < dim_num; ++dim_idx) {
  780. shape_dims.emplace_back(shape_addr[dim_idx]);
  781. GELOGD("Node [%zu]th output dim[%u]=%ld.", i, dim_idx, shape_addr[dim_idx]);
  782. }
  783. }
  784. GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(GeShape(shape_dims), output_desc[i]),
  785. "[Update][ShapeToOutputDesc] failed , output:%zu.", i);
  786. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  787. GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(i, output_desc[i]), "[Update][OutputDesc] failed, output:%zu.", i);
  788. }
  789. }
  790. return SUCCESS;
  791. }
  792. Status AiCpuTask::UpdateShapeAndDataByResultSummary(vector<GeTensorDesc> &output_desc,
  793. vector<DataBuffer> &outputs,
  794. rtStream_t stream) {
  795. if (num_outputs_ == 0) {
  796. GELOGI("Output num is 0, there is no need to update the output and size.");
  797. return SUCCESS;
  798. }
  799. GELOGI("Update shape and data by result summary begin.");
  800. for (auto out_shape : out_shape_hbm_) {
  801. FreeHbm(out_shape);
  802. }
  803. out_shape_hbm_.clear();
  804. GE_CHK_STATUS_RET(ReadResultSummaryAndPrepareMemory(),
  805. "[Read][ResultSummaryAndPrepareMemory] failed.");
  806. GE_CHK_STATUS_RET(CopyDataToHbm(outputs, stream),
  807. "[Copy][DataToHbm] failed.");
  808. GE_CHK_STATUS_RET(UpdateShapeByHbmBuffer(output_desc),
  809. "[Update][ShapeByHbmBuffer] failed.");
  810. for (auto out_shape : out_shape_hbm_) {
  811. FreeHbm(out_shape);
  812. }
  813. out_shape_hbm_.clear();
  814. GELOGI("Update shape and data by result summary end.");
  815. return SUCCESS;
  816. }
  817. Status AiCpuTask::InitForSummaryAndCopy() {
  818. if (unknown_type_ != DEPEND_COMPUTE || num_outputs_ == 0) {
  819. GELOGI("Unknown_type is %d, output num is %zu.", unknown_type_, num_outputs_);
  820. return SUCCESS;
  821. }
  822. output_summary_.resize(num_outputs_);
  823. constexpr auto result_summary_size = sizeof(aicpu::FWKAdapter::ResultSummary);
  824. for (size_t i = 0; i < num_outputs_; ++i) {
  825. GE_CHK_RT_RET(rtMalloc(&output_summary_[i], result_summary_size, RT_MEMORY_HBM));
  826. }
  827. output_summary_host_.resize(num_outputs_);
  828. const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
  829. GE_CHK_RT_RET(rtMalloc(&copy_input_release_flag_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  830. GE_CHK_RT_RET(rtMalloc(&copy_input_data_size_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  831. GE_CHK_RT_RET(rtMalloc(&copy_input_src_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  832. GE_CHK_RT_RET(rtMalloc(&copy_input_dst_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  833. GE_CHK_RT_RET(rtMalloc(&copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL), RT_MEMORY_HBM));
  834. std::vector<uint64_t> copy_io_addr;
  835. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_release_flag_dev_));
  836. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_data_size_dev_));
  837. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_src_dev_));
  838. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_dst_dev_));
  839. const auto copy_io_addr_size = sizeof(uint64_t) * copy_io_addr.size();
  840. GE_CHK_RT_RET(rtMalloc(&copy_ioaddr_dev_, copy_io_addr_size, RT_MEMORY_HBM));
  841. GE_CHK_RT_RET(rtMemcpy(copy_ioaddr_dev_, copy_io_addr_size,
  842. copy_io_addr.data(), copy_io_addr_size, RT_MEMCPY_HOST_TO_DEVICE));
  843. return SUCCESS;
  844. }
  845. Status AiCpuTask::SetMemCopyTask(const domi::KernelExDef &kernel_def) {
  846. if (kernel_def.args_size() > sizeof(STR_FWK_OP_KERNEL)) {
  847. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Size]sizeof STR_FWK_OP_KERNEL is: %lu, but args_size is: %d",
  848. sizeof(STR_FWK_OP_KERNEL), kernel_def.args_size());
  849. REPORT_INNER_ERROR("E19999", "[sizeof STR_FWK_OP_KERNEL is: %lu, but args_size is: %d",
  850. sizeof(STR_FWK_OP_KERNEL), kernel_def.args_size());
  851. return ACL_ERROR_GE_PARAM_INVALID;
  852. }
  853. GE_CHK_RT_RET(rtMalloc(&copy_workspace_buf_, kernel_def.task_info_size(), RT_MEMORY_HBM));
  854. GE_CHK_RT_RET(rtMemcpy(copy_workspace_buf_, kernel_def.task_info_size(),
  855. kernel_def.task_info().data(), kernel_def.task_info_size(), RT_MEMCPY_HOST_TO_DEVICE));
  856. STR_FWK_OP_KERNEL aicpu_task = {0};
  857. auto sec_ret = memcpy_s(&aicpu_task, sizeof(STR_FWK_OP_KERNEL),
  858. kernel_def.args().data(), kernel_def.args().size());
  859. if (sec_ret != EOK) {
  860. GELOGE(ACL_ERROR_GE_MEMORY_OPERATE_FAILED, "[Update][TaskArgs] failed, ret: %d", sec_ret);
  861. REPORT_INNER_ERROR("E19999", "update STR_FWK_OP_KERNEL args failed because memcpy_s return %d.", sec_ret);
  862. return ACL_ERROR_GE_MEMORY_OPERATE_FAILED;
  863. }
  864. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = reinterpret_cast<uintptr_t>(copy_ioaddr_dev_);
  865. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = reinterpret_cast<uintptr_t>(copy_workspace_buf_);
  866. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  867. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  868. GE_CHK_RT_RET(rtMemcpy(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
  869. &aicpu_task, sizeof(STR_FWK_OP_KERNEL), RT_MEMCPY_HOST_TO_DEVICE));
  870. return SUCCESS;
  871. }
  872. Status AiCpuTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  873. const std::vector<DataBuffer> &input_buffers,
  874. std::vector<GeTensorDesc> &output_desc,
  875. std::vector<DataBuffer> &output_buffers,
  876. rtStream_t stream) {
  877. GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
  878. if (unknown_type_ == DEPEND_COMPUTE) {
  879. std::vector<DataBuffer> summary_buffers;
  880. for (size_t i = 0; i < num_outputs_; ++i) {
  881. summary_buffers.emplace_back(output_summary_[i], sizeof(aicpu::FWKAdapter::ResultSummary), false);
  882. }
  883. GE_CHK_STATUS_RET_NOLOG(UpdateIoAddr(input_buffers, summary_buffers));
  884. } else {
  885. GE_CHK_STATUS_RET_NOLOG(UpdateIoAddr(input_buffers, output_buffers));
  886. }
  887. GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
  888. if (unknown_type_ == DEPEND_SHAPE_RANGE) {
  889. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  890. GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
  891. } else if (unknown_type_ == DEPEND_COMPUTE) {
  892. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  893. GE_CHK_STATUS_RET_NOLOG(UpdateShapeAndDataByResultSummary(output_desc, output_buffers, stream));
  894. }
  895. return SUCCESS;
  896. }
  897. Status AiCpuBaseTask::UpdateArgTable(const SingleOpModelParam &param) {
  898. // aicpu do not have workspace, for now
  899. return DoUpdateArgTable(param, false);
  900. }
  901. const std::string &AiCpuBaseTask::GetTaskType() const { return kTaskTypeAicpu; }
  902. void AiCpuTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  903. arg_base = reinterpret_cast<uintptr_t *>(io_addr_host_.data());
  904. arg_count = io_addr_host_.size();
  905. }
  906. void AiCpuCCTask::SetKernelArgs(std::unique_ptr<uint8_t[]> args, size_t arg_size) {
  907. args_ = std::move(args);
  908. arg_size_ = arg_size;
  909. // The blockdim value is defult "1" for rtCpuKernelLaunch
  910. block_dim_ = 1;
  911. }
  912. void AiCpuCCTask::SetSoName(const std::string &so_name) { so_name_ = so_name; }
  913. void AiCpuCCTask::SetkernelName(const std::string &kernel_Name) { kernel_name_ = kernel_Name; }
  914. void AiCpuCCTask::SetIoAddr(uintptr_t *io_addr) { io_addr_ = io_addr; }
  915. const void *AiCpuCCTask::GetArgs() const { return args_.get(); }
  916. size_t AiCpuCCTask::GetArgSize() const { return arg_size_; }
  917. AiCpuCCTask::~AiCpuCCTask() {
  918. }
  919. Status AiCpuCCTask::LaunchKernel(rtStream_t stream) {
  920. GELOGI("To invoke rtCpuKernelLaunch. block_dim = %u, so_name is %s, kernel_name is %s", block_dim_, so_name_.data(),
  921. kernel_name_.data());
  922. // sm_desc is nullptr, because l2 buffer does not support
  923. auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
  924. auto ret = rtCpuKernelLaunchWithFlag(static_cast<const void *>(so_name_.data()),
  925. static_cast<const void *>(kernel_name_.data()),
  926. block_dim_, args_.get(), static_cast<uint32_t>(arg_size_),
  927. sm_desc, stream, dump_flag_);
  928. if (ret != RT_ERROR_NONE) {
  929. GELOGE(ret, "[Invoke][rtCpuKernelLaunchWithFlag] failed. ret = %d.", ret);
  930. REPORT_CALL_ERROR("E19999", "invoke rtCpuKernelLaunchWithFlag failed, ret:%d.", ret);
  931. return RT_ERROR_TO_GE_STATUS(ret);
  932. }
  933. GELOGI("[TASK_INFO] %lu/%s", kernel_id_, op_type_.c_str());
  934. GELOGD("Invoke rtCpuKernelLaunch succeeded");
  935. return SUCCESS;
  936. }
  937. Status AiCpuCCTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  938. const std::vector<DataBuffer> &input_buffers,
  939. std::vector<GeTensorDesc> &output_desc,
  940. std::vector<DataBuffer> &output_buffers,
  941. rtStream_t stream) {
  942. GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
  943. GE_CHK_STATUS_RET_NOLOG(UpdateIoAddr(input_buffers, output_buffers));
  944. GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
  945. if (unknown_type_ == DEPEND_SHAPE_RANGE) {
  946. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  947. GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
  948. }
  949. return SUCCESS;
  950. }
  951. void AiCpuCCTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  952. arg_base = io_addr_;
  953. arg_count = io_addr_num_;
  954. }
  955. Status MemcpyAsyncTask::LaunchKernel(rtStream_t stream) {
  956. auto src_addr = reinterpret_cast<void *>(addresses_[0]);
  957. auto dst_addr = reinterpret_cast<void *>(addresses_[1]);
  958. kind_ = (kind_ == RT_MEMCPY_ADDR_DEVICE_TO_DEVICE) ? RT_MEMCPY_DEVICE_TO_DEVICE : kind_;
  959. GE_CHK_RT_RET(rtMemcpyAsync(dst_addr, dst_max_, src_addr, count_, kind_, stream));
  960. return SUCCESS;
  961. }
  962. void MemcpyAsyncTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  963. arg_base = addresses_;
  964. arg_count = kMemcpyArgCount;
  965. }
  966. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示