import unittest import numpy as np import torch from fastNLP import AccuracyMetric from fastNLP.core.metrics import _pred_topk, _accuracy_topk from fastNLP.core.vocabulary import Vocabulary from collections import Counter from fastNLP.core.metrics import SpanFPreRecMetric, ExtractiveQAMetric def _generate_tags(encoding_type, number_labels=4): vocab = {} for i in range(number_labels): label = str(i) for tag in encoding_type: if tag == 'O': if tag not in vocab: vocab['O'] = len(vocab) + 1 continue vocab['{}-{}'.format(tag, label)] = len(vocab) + 1 # 其实表达的是这个的count return vocab def _convert_res_to_fastnlp_res(metric_result): allen_result = {} key_map = {'f1-measure-overall': "f", "recall-overall": "rec", "precision-overall": "pre"} for key, value in metric_result.items(): if key in key_map: key = key_map[key] else: label = key.split('-')[-1] if key.startswith('f1'): key = 'f-{}'.format(label) else: key = '{}-{}'.format(key[:3], label) allen_result[key] = round(value, 6) return allen_result class TestAccuracyMetric(unittest.TestCase): def test_AccuracyMetric1(self): # (1) only input, targets passed pred_dict = {"pred": torch.zeros(4, 3)} target_dict = {'target': torch.zeros(4)} metric = AccuracyMetric() metric(pred_dict=pred_dict, target_dict=target_dict) print(metric.get_metric()) def test_AccuracyMetric2(self): # (2) with corrupted size try: pred_dict = {"pred": torch.zeros(4, 3, 2)} target_dict = {'target': torch.zeros(4)} metric = AccuracyMetric() metric(pred_dict=pred_dict, target_dict=target_dict, ) print(metric.get_metric()) except Exception as e: print(e) return print("No exception catches.") def test_AccuracyMetric3(self): # (3) the second batch is corrupted size try: metric = AccuracyMetric() pred_dict = {"pred": torch.zeros(4, 3, 2)} target_dict = {'target': torch.zeros(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict) pred_dict = {"pred": torch.zeros(4, 3, 2)} target_dict = {'target': torch.zeros(4)} metric(pred_dict=pred_dict, target_dict=target_dict) print(metric.get_metric()) except Exception as e: print(e) return self.assertTrue(True, False), "No exception catches." def test_AccuaryMetric4(self): # (5) check reset metric = AccuracyMetric() pred_dict = {"pred": torch.randn(4, 3, 2)} target_dict = {'target': torch.ones(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict) ans = torch.argmax(pred_dict["pred"], dim=2).to(target_dict["target"]) == target_dict["target"] res = metric.get_metric() self.assertTrue(isinstance(res, dict)) self.assertTrue("acc" in res) self.assertAlmostEqual(res["acc"], float(ans.float().mean()), places=3) def test_AccuaryMetric5(self): # (5) check reset metric = AccuracyMetric() pred_dict = {"pred": torch.randn(4, 3, 2)} target_dict = {'target': torch.zeros(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict) res = metric.get_metric(reset=False) ans = (torch.argmax(pred_dict["pred"], dim=2).float() == target_dict["target"]).float().mean() self.assertAlmostEqual(res["acc"], float(ans), places=4) def test_AccuaryMetric6(self): # (6) check numpy array is not acceptable try: metric = AccuracyMetric() pred_dict = {"pred": np.zeros((4, 3, 2))} target_dict = {'target': np.zeros((4, 3))} metric(pred_dict=pred_dict, target_dict=target_dict) except Exception as e: print(e) return self.assertTrue(True, False), "No exception catches." def test_AccuaryMetric7(self): # (7) check map, match metric = AccuracyMetric(pred='predictions', target='targets') pred_dict = {"predictions": torch.randn(4, 3, 2)} target_dict = {'targets': torch.zeros(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict) res = metric.get_metric() ans = (torch.argmax(pred_dict["predictions"], dim=2).float() == target_dict["targets"]).float().mean() self.assertAlmostEqual(res["acc"], float(ans), places=4) def test_AccuaryMetric8(self): try: metric = AccuracyMetric(pred='predictions', target='targets') pred_dict = {"prediction": torch.zeros(4, 3, 2)} target_dict = {'targets': torch.zeros(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict, ) self.assertDictEqual(metric.get_metric(), {'acc': 1}) except Exception as e: print(e) return self.assertTrue(True, False), "No exception catches." def test_AccuaryMetric9(self): # (9) check map, include unused try: metric = AccuracyMetric(pred='prediction', target='targets') pred_dict = {"prediction": torch.zeros(4, 3, 2), 'unused': 1} target_dict = {'targets': torch.zeros(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict) self.assertDictEqual(metric.get_metric(), {'acc': 1}) except Exception as e: print(e) return self.assertTrue(True, False), "No exception catches." def test_AccuaryMetric10(self): # (10) check _fast_metric try: metric = AccuracyMetric() pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(3) * 3} target_dict = {'targets': torch.zeros(4, 3)} metric(pred_dict=pred_dict, target_dict=target_dict) self.assertDictEqual(metric.get_metric(), {'acc': 1}) except Exception as e: print(e) return self.assertTrue(True, False), "No exception catches." def test_duplicate(self): # 0.4.1的潜在bug,不能出现形参重复的情况 metric = AccuracyMetric(pred='predictions', target='targets') pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(4) * 3, 'pred':0} target_dict = {'targets':torch.zeros(4, 3), 'target': 0} metric(pred_dict=pred_dict, target_dict=target_dict) def test_seq_len(self): N = 256 seq_len = torch.zeros(N).long() seq_len[0] = 2 pred = {'pred': torch.ones(N, 2)} target = {'target': torch.ones(N, 2), 'seq_len': seq_len} metric = AccuracyMetric() metric(pred_dict=pred, target_dict=target) self.assertDictEqual(metric.get_metric(), {'acc': 1.}) seq_len[1:] = 1 metric(pred_dict=pred, target_dict=target) self.assertDictEqual(metric.get_metric(), {'acc': 1.}) class SpanF1PreRecMetric(unittest.TestCase): def test_case1(self): from fastNLP.core.metrics import _bmes_tag_to_spans from fastNLP.core.metrics import _bio_tag_to_spans bmes_lst = ['M-8', 'S-2', 'S-0', 'B-9', 'B-6', 'E-5', 'B-7', 'S-2', 'E-7', 'S-8'] bio_lst = ['O-8', 'O-2', 'B-0', 'O-9', 'I-6', 'I-5', 'I-7', 'I-2', 'I-7', 'O-8'] expect_bmes_res = set() expect_bmes_res.update([('8', (0, 1)), ('2', (1, 2)), ('0', (2, 3)), ('9', (3, 4)), ('6', (4, 5)), ('5', (5, 6)), ('7', (6, 7)), ('2', (7, 8)), ('7', (8, 9)), ('8', (9, 10))]) expect_bio_res = set() expect_bio_res.update([('7', (8, 9)), ('0', (2, 3)), ('2', (7, 8)), ('5', (5, 6)), ('6', (4, 5)), ('7', (6, 7))]) self.assertSetEqual(expect_bmes_res, set(_bmes_tag_to_spans(bmes_lst))) self.assertSetEqual(expect_bio_res, set(_bio_tag_to_spans(bio_lst))) def test_case2(self): # 测试不带label的 from fastNLP.core.metrics import _bmes_tag_to_spans from fastNLP.core.metrics import _bio_tag_to_spans bmes_lst = ['B', 'E', 'B', 'S', 'B', 'M', 'E', 'M', 'B', 'E'] bio_lst = ['I', 'B', 'O', 'O', 'I', 'O', 'I', 'B', 'O', 'O'] expect_bmes_res = set() expect_bmes_res.update([('', (0, 2)), ('', (2, 3)), ('', (3, 4)), ('', (4, 7)), ('', (7, 8)), ('', (8, 10))]) expect_bio_res = set() expect_bio_res.update([('', (7, 8)), ('', (6, 7)), ('', (4, 5)), ('', (0, 1)), ('', (1, 2))]) self.assertSetEqual(expect_bmes_res, set(_bmes_tag_to_spans(bmes_lst))) self.assertSetEqual(expect_bio_res, set(_bio_tag_to_spans(bio_lst))) def test_case3(self): number_labels = 4 # bio tag fastnlp_bio_vocab = Vocabulary(unknown=None, padding=None) fastnlp_bio_vocab.word_count = Counter(_generate_tags('BIO', number_labels)) fastnlp_bio_metric = SpanFPreRecMetric(tag_vocab=fastnlp_bio_vocab, only_gross=False) bio_sequence = torch.FloatTensor([[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169, -0.3782, 0.8240], [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, 1.1563, -0.3562, -1.4116], [ 1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858, 2.0023, 0.7075], [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186, 0.3832, -0.1540], [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120, -1.3508, -0.9513], [ 1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919, -0.0842, -0.4294]], [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490, -1.4138, -0.8853], [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845, -1.0726, 0.0364], [ 0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264, -0.8836, -0.9320], [ 0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044, -1.6857, 1.1571], [ 1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125, -0.5837, 1.0184], [ 1.9495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943, -0.9025, 0.0864]]]) bio_target = torch.LongTensor([[3, 6, 0, 8, 2, 4], [4, 1, 7, 0, 4, 7]]) fastnlp_bio_metric({'pred': bio_sequence, 'seq_len': torch.LongTensor([6, 6])}, {'target': bio_target}) expect_bio_res = {'pre-1': 0.333333, 'rec-1': 0.333333, 'f-1': 0.333333, 'pre-2': 0.5, 'rec-2': 0.5, 'f-2': 0.5, 'pre-0': 0.0, 'rec-0': 0.0, 'f-0': 0.0, 'pre-3': 0.0, 'rec-3': 0.0, 'f-3': 0.0, 'pre': 0.222222, 'rec': 0.181818, 'f': 0.2} self.assertDictEqual(expect_bio_res, fastnlp_bio_metric.get_metric()) def test_case4(self): # bmes tag def _generate_samples(): target = [] seq_len = [] vocab = Vocabulary(unknown=None, padding=None) for i in range(3): target_i = [] seq_len_i = 0 for j in range(1, 10): word_len = np.random.randint(1, 5) seq_len_i += word_len if word_len==1: target_i.append('S') else: target_i.append('B') target_i.extend(['M']*(word_len-2)) target_i.append('E') vocab.add_word_lst(target_i) target.append(target_i) seq_len.append(seq_len_i) target_ = np.zeros((3, max(seq_len))) for i in range(3): target_i = [vocab.to_index(t) for t in target[i]] target_[i, :seq_len[i]] = target_i return target_, target, seq_len, vocab def get_eval(raw_target, pred, vocab, seq_len): pred = pred.argmax(dim=-1).tolist() tp = 0 gold = 0 seg = 0 pred_target = [] for i in range(len(seq_len)): tags = [vocab.to_word(p) for p in pred[i][:seq_len[i]]] spans = [] prev_bmes_tag = None for idx, tag in enumerate(tags): if tag in ('B', 'S'): spans.append([idx, idx]) elif tag in ('M', 'E') and prev_bmes_tag in ('B', 'M'): spans[-1][1] = idx else: spans.append([idx, idx]) prev_bmes_tag = tag tmp = [] for span in spans: if span[1]-span[0]>0: tmp.extend(['B'] + ['M']*(span[1]-span[0]-1) + ['E']) else: tmp.append('S') pred_target.append(tmp) for i in range(len(seq_len)): raw_pred = pred_target[i] start = 0 for j in range(seq_len[i]): if raw_target[i][j] in ('E', 'S'): flag = True for k in range(start, j+1): if raw_target[i][k]!=raw_pred[k]: flag = False break if flag: tp += 1 start = j + 1 gold += 1 if raw_pred[j] in ('E', 'S'): seg += 1 pre = round(tp/seg, 6) rec = round(tp/gold, 6) return {'f': round(2*pre*rec/(pre+rec), 6), 'pre': pre, 'rec':rec} target, raw_target, seq_len, vocab = _generate_samples() pred = torch.randn(3, max(seq_len), 4) expected_metric = get_eval(raw_target, pred, vocab, seq_len) metric = SpanFPreRecMetric(vocab, encoding_type='bmes') metric({'pred': pred, 'seq_len':torch.LongTensor(seq_len)}, {'target': torch.from_numpy(target)}) # print(metric.get_metric(reset=False)) # print(expected_metric) metric_value = metric.get_metric() for key, value in expected_metric.items(): self.assertAlmostEqual(value, metric_value[key], places=5) class TestUsefulFunctions(unittest.TestCase): # 测试metrics.py中一些看上去挺有用的函数 def test_case_1(self): # multi-class _ = _accuracy_topk(np.random.randint(0, 3, size=(10, 1)), np.random.randint(0, 3, size=(10, 1)), k=3) _ = _pred_topk(np.random.randint(0, 3, size=(10, 1))) # 跑通即可 class TestExtractiveQAMetric(unittest.TestCase): def test_cast_1(self): qa_prediction = torch.FloatTensor([[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169, -0.3782, 0.8240], [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, -1.1563, -0.3562, -1.4116], [-1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858, -2.0023, 0.0075], [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186, 0.3832, -0.1540], [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120, -1.3508, -0.9513], [1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919, -0.0842, -0.4294]], [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490, -1.4138, -0.8853], [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845, -1.0726, 0.0364], [0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264, -0.8836, -0.9320], [0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044, -1.6857, 1.1571], [1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125, 3.5837, 1.0184], [1.6495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943, -0.9025, 0.0864]]]) qa_prediction = qa_prediction.permute(1, 2, 0) pred1, pred2 = qa_prediction.split(1, dim=-1) pred1 = pred1.squeeze(-1) pred2 = pred2.squeeze(-1) target1 = torch.LongTensor([3, 0, 2, 4, 4, 0]) target2 = torch.LongTensor([4, 1, 6, 8, 7, 1]) metric = ExtractiveQAMetric() metric.evaluate(pred1, pred2, target1, target2) result = metric.get_metric() truth = {'EM': 62.5, 'f_1': 72.5, 'noAns-f_1': 50.0, 'noAns-EM': 50.0, 'hasAns-f_1': 95.0, 'hasAns-EM': 75.0} for k, v in truth.items(): self.assertTrue(k in result) self.assertEqual(v, result[k])