import os import torch.nn as nn import unittest from fastNLP.core.trainer import SeqLabelTrainer from fastNLP.core.loss import Loss from fastNLP.core.optimizer import Optimizer from fastNLP.models.sequence_modeling import SeqLabeling class TestTrainer(unittest.TestCase): def test_case_1(self): args = {"epochs": 3, "batch_size": 8, "validate": True, "use_cuda": True, "pickle_path": "./save/", "save_best_dev": True, "model_name": "default_model_name.pkl", "loss": Loss(None), "optimizer": Optimizer("Adam", lr=0.001, weight_decay=0), "vocab_size": 20, "word_emb_dim": 100, "rnn_hidden_units": 100, "num_classes": 3 } trainer = SeqLabelTrainer() train_data = [ [[1, 2, 3, 4, 5, 6], [1, 0, 1, 0, 1, 2]], [[2, 3, 4, 5, 1, 6], [0, 1, 0, 1, 0, 2]], [[1, 4, 1, 4, 1, 6], [1, 0, 1, 0, 1, 2]], [[1, 2, 3, 4, 5, 6], [1, 0, 1, 0, 1, 2]], [[2, 3, 4, 5, 1, 6], [0, 1, 0, 1, 0, 2]], [[1, 4, 1, 4, 1, 6], [1, 0, 1, 0, 1, 2]], ] dev_data = train_data model = SeqLabeling(args) trainer.train(network=model, train_data=train_data, dev_data=dev_data)