import unittest from fastNLP import Vocabulary from fastNLP.embeddings import BertEmbedding import torch import os @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis") class TestDownload(unittest.TestCase): def test_download(self): # import os vocab = Vocabulary().add_word_lst("This is a test .".split()) embed = BertEmbedding(vocab, model_dir_or_name='en') words = torch.LongTensor([[2, 3, 4, 0]]) print(embed(words).size()) def test_word_drop(self): vocab = Vocabulary().add_word_lst("This is a test .".split()) embed = BertEmbedding(vocab, model_dir_or_name='en', dropout=0.1, word_dropout=0.2) for i in range(10): words = torch.LongTensor([[2, 3, 4, 0]]) print(embed(words).size())