import unittest from fastNLP.embeddings import StaticEmbedding from fastNLP import Vocabulary import torch class TestRandomSameEntry(unittest.TestCase): def test_same_vector(self): vocab = Vocabulary().add_word_lst(["The", "the", "THE"]) embed = StaticEmbedding(vocab, model_dir_or_name=None, embedding_dim=5, lower=True) words = torch.LongTensor([[vocab.to_index(word) for word in ["The", "the", "THE"]]]) words = embed(words) embed_0 = words[0, 0] for i in range(1, words.size(1)): assert torch.sum(embed_0==words[0, i]).eq(len(embed_0))