import sys sys.path.append("..") from fastNLP.loader.config_loader import ConfigLoader, ConfigSection from fastNLP.core.trainer import SeqLabelTrainer from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle from fastNLP.saver.model_saver import ModelSaver from fastNLP.loader.model_loader import ModelLoader from fastNLP.core.tester import SeqLabelTester from fastNLP.models.sequence_modeling import SeqLabeling from fastNLP.core.predictor import Predictor data_name = "pku_training.utf8" cws_data_path = "/home/zyfeng/data/pku_training.utf8" pickle_path = "./save/" data_infer_path = "/home/zyfeng/data/pku_test.utf8" def infer(): # Load infer configuration, the same as test test_args = ConfigSection() ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args}) # fetch dictionary size and number of labels from pickle files word2index = load_pickle(pickle_path, "word2id.pkl") test_args["vocab_size"] = len(word2index) index2label = load_pickle(pickle_path, "id2class.pkl") test_args["num_classes"] = len(index2label) # Define the same model model = SeqLabeling(test_args) # Dump trained parameters into the model ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl") print("model loaded!") # Data Loader raw_data_loader = BaseLoader(data_name, data_infer_path) infer_data = raw_data_loader.load_lines() # Inference interface infer = Predictor(pickle_path) results = infer.predict(model, infer_data) print(results) print("Inference finished!") def train_test(): # Config Loader train_args = ConfigSection() test_args = ConfigSection() ConfigLoader("good_name", "good_path").load_config("./cws.cfg", {"train": train_args, "test": test_args}) # Data Loader loader = TokenizeDatasetLoader(data_name, cws_data_path) train_data = loader.load_pku() # Preprocessor preprocess = SeqLabelPreprocess() data_train, data_dev = preprocess.run(train_data, pickle_path=pickle_path, train_dev_split=0.3) train_args["vocab_size"] = preprocess.vocab_size train_args["num_classes"] = preprocess.num_classes # Trainer trainer = SeqLabelTrainer(train_args) # Model model = SeqLabeling(train_args) # Start training trainer.train(model, data_train, data_dev) print("Training finished!") # Saver saver = ModelSaver("./save/saved_model.pkl") saver.save_pytorch(model) print("Model saved!") # testing with validation set test(data_dev) def test(test_data): # Config Loader train_args = ConfigSection() ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args}) # Define the same model model = SeqLabeling(train_args) # Dump trained parameters into the model ModelLoader.load_pytorch(model, "./data_for_tests/saved_model.pkl") print("model loaded!") # Load test configuration test_args = ConfigSection() ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args}) # Tester tester = SeqLabelTester(test_args) # Start testing tester.test(model, test_data) # print test results print(tester.show_matrices()) print("model tested!") if __name__ == "__main__": train_test()