import unittest import torch from fastNLP.models import CNNText from fastNLP.modules.utils import get_dropout_mask, summary class TestUtil(unittest.TestCase): def test_get_dropout_mask(self): tensor = torch.randn(3, 4) mask = get_dropout_mask(0.3, tensor) self.assertSequenceEqual(mask.size(), torch.Size([3, 4])) def test_summary(self): model = CNNText(embed=(4, 4), num_classes=2, kernel_nums=(9,5), kernel_sizes=(1,3)) # 4 * 4 + 4 * (9 * 1 + 5 * 3) + 2 * (9 + 5 + 1) = 142 self.assertSequenceEqual((142, 142, 0), summary(model)) model.embed.requires_grad = False self.assertSequenceEqual((142, 126, 16), summary(model))