import numpy import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F class HAN(nn.Module): def __init__(self, input_size, output_size, word_hidden_size, word_num_layers, word_context_size, sent_hidden_size, sent_num_layers, sent_context_size): super(HAN, self).__init__() self.word_layer = AttentionNet(input_size, word_hidden_size, word_num_layers, word_context_size) self.sent_layer = AttentionNet(2* word_hidden_size, sent_hidden_size, sent_num_layers, sent_context_size) self.output_layer = nn.Linear(2* sent_hidden_size, output_size) self.softmax = nn.Softmax() def forward(self, x, level='w'): # input is a sequence of vector # if level == w, a seq of words (a sent); level == s, a seq of sents (a doc) if level == 's': v = self.sent_layer(x) output = self.softmax(self.output_layer(v)) return output elif level == 'w': s = self.word_layer(x) return s else: print('unknow level in Parameter!') class AttentionNet(nn.Module): def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size): super(AttentionNet, self).__init__() self.input_size = input_size self.gru_hidden_size = gru_hidden_size self.gru_num_layers = gru_num_layers self.context_vec_size = context_vec_size # Encoder self.gru = nn.GRU(input_size=input_size, hidden_size=gru_hidden_size, num_layers=gru_num_layers, batch_first=False, bidirectional=True) # Attention self.fc = nn.Linear(2* gru_hidden_size, context_vec_size) self.tanh = nn.Tanh() self.softmax = nn.Softmax() # context vector self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1)) self.context_vec.data.uniform_(-0.1, 0.1) def forward(self, inputs): # inputs's dim seq_len*word_dim inputs = torch.unsqueeze(inputs, 1) h_t, hidden = self.gru(inputs) h_t = torch.squeeze(h_t, 1) u = self.tanh(self.fc(h_t)) alpha = self.softmax(torch.mm(u, self.context_vec)) output = torch.mm(h_t.t(), alpha) return output