import numpy as np from fastNLP.envs.imports import _NEED_IMPORT_PADDLE if _NEED_IMPORT_PADDLE: import paddle from paddle.io import Dataset else: from fastNLP.core.utils.dummy_class import DummyClass as Dataset class PaddleNormalDataset(Dataset): def __init__(self, num_of_data=1000): self.num_of_data = num_of_data self._data = list(range(num_of_data)) def __len__(self): return self.num_of_data def __getitem__(self, item): return self._data[item] class PaddleRandomMaxDataset(Dataset): def __init__(self, num_samples, num_features): self.x = paddle.randn((num_samples, num_features)) self.y = self.x.argmax(axis=-1) def __len__(self): return len(self.x) def __getitem__(self, item): return {"x": self.x[item], "y": self.y[item]}