{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# FastNLP 1分钟上手教程" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## step 1\n", "读取数据集" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/yh/miniconda2/envs/python3/lib/python3.6/site-packages/tqdm/autonotebook/__init__.py:14: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n", " \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n" ] } ], "source": [ "import sys\n", "sys.path.append(\"../\")\n", "\n", "from fastNLP import DataSet\n", "\n", "# linux_path = \"../test/data_for_tests/tutorial_sample_dataset.csv\"\n", "win_path = \"../test/data_for_tests/tutorial_sample_dataset.csv\"\n", "ds = DataSet.read_csv(win_path, headers=('raw_sentence', 'label'), sep='\\t')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'raw_sentence': this quiet , introspective and entertaining independent is worth seeking .,\n", "'label': 4,\n", "'label_seq': 4,\n", "'words': ['this', 'quiet', ',', 'introspective', 'and', 'entertaining', 'independent', 'is', 'worth', 'seeking', '.']}" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ds[1]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## step 2\n", "数据预处理\n", "1. 类型转换\n", "2. 切分验证集\n", "3. 构建词典" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "# 将所有数字转为小写\n", "ds.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence')\n", "# label转int\n", "ds.apply(lambda x: int(x['label']), new_field_name='label_seq', is_target=True)\n", "\n", "def split_sent(ins):\n", " return ins['raw_sentence'].split()\n", "ds.apply(split_sent, new_field_name='words', is_input=True)\n" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Train size: 54\n", "Test size: 23\n" ] } ], "source": [ "# 分割训练集/验证集\n", "train_data, dev_data = ds.split(0.3)\n", "print(\"Train size: \", len(train_data))\n", "print(\"Test size: \", len(dev_data))" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "from fastNLP import Vocabulary\n", "vocab = Vocabulary(min_freq=2)\n", "train_data.apply(lambda x: [vocab.add(word) for word in x['words']])\n", "\n", "# index句子, Vocabulary.to_index(word)\n", "train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)\n", "dev_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='word_seq', is_input=True)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## step 3\n", " 定义模型" ] }, { "cell_type": "code", "execution_count": 62, "metadata": {}, "outputs": [], "source": [ "from fastNLP.models import CNNText\n", "model = CNNText(embed_num=len(vocab), embed_dim=50, num_classes=5, padding=2, dropout=0.1)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## step 4\n", "开始训练" ] }, { "cell_type": "code", "execution_count": 63, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "training epochs started 2018-12-07 14:03:41\n" ] }, { "data": { "text/plain": [ "HBox(children=(IntProgress(value=0, layout=Layout(flex='2'), max=6), HTML(value='')), layout=Layout(display='i…" ] }, "execution_count": 0, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/3. Step:2/6. AccuracyMetric: acc=0.26087\n", "Epoch 2/3. Step:4/6. AccuracyMetric: acc=0.347826\n", "Epoch 3/3. Step:6/6. AccuracyMetric: acc=0.608696\n", "Train finished!\n" ] } ], "source": [ "from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric\n", "trainer = Trainer(model=model, \n", " train_data=train_data, \n", " dev_data=dev_data,\n", " loss=CrossEntropyLoss(),\n", " metrics=AccuracyMetric()\n", " )\n", "trainer.train()\n", "print('Train finished!')\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 本教程结束。更多操作请参考进阶教程。" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 1 }