import unittest from fastNLP import DataSet from fastNLP import Instance from fastNLP import Vocabulary from fastNLP.core.losses import CrossEntropyLoss from fastNLP.core.metrics import AccuracyMetric class TestTutorial(unittest.TestCase): def test_fastnlp_10min_tutorial(self): # 从csv读取数据到DataSet sample_path = "test/data_for_tests/tutorial_sample_dataset.csv" dataset = DataSet.read_csv(sample_path, headers=('raw_sentence', 'label'), sep='\t') print(len(dataset)) print(dataset[0]) print(dataset[-3]) dataset.append(Instance(raw_sentence='fake data', label='0')) # 将所有数字转为小写 dataset.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence') # label转int dataset.apply(lambda x: int(x['label']), new_field_name='label') # 使用空格分割句子 def split_sent(ins): return ins['raw_sentence'].split() dataset.apply(split_sent, new_field_name='words') # 增加长度信息 dataset.apply(lambda x: len(x['words']), new_field_name='seq_len') print(len(dataset)) print(dataset[0]) # DataSet.drop(func)筛除数据 dataset.drop(lambda x: x['seq_len'] <= 3, inplace=True) print(len(dataset)) # 设置DataSet中,哪些field要转为tensor # set target,loss或evaluate中的golden,计算loss,模型评估时使用 dataset.set_target("label") # set input,模型forward时使用 dataset.set_input("words", "seq_len") # 分出测试集、训练集 test_data, train_data = dataset.split(0.5) print(len(test_data)) print(len(train_data)) # 构建词表, Vocabulary.add(word) vocab = Vocabulary(min_freq=2) train_data.apply(lambda x: [vocab.add(word) for word in x['words']]) vocab.build_vocab() # index句子, Vocabulary.to_index(word) train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words') test_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words') print(test_data[0]) # 如果你们需要做强化学习或者GAN之类的项目,你们也可以使用这些数据预处理的工具 from fastNLP.core.batch import Batch from fastNLP.core.sampler import RandomSampler batch_iterator = Batch(dataset=train_data, batch_size=2, sampler=RandomSampler()) for batch_x, batch_y in batch_iterator: print("batch_x has: ", batch_x) print("batch_y has: ", batch_y) break from fastNLP.models import CNNText model = CNNText((len(vocab), 50), num_classes=5, padding=2, dropout=0.1) from fastNLP import Trainer from copy import deepcopy # 更改DataSet中对应field的名称,要以模型的forward等参数名一致 train_data.rename_field('label', 'label_seq') test_data.rename_field('label', 'label_seq') loss = CrossEntropyLoss(pred="output", target="label_seq") metric = AccuracyMetric(pred="predict", target="label_seq") # 实例化Trainer,传入模型和数据,进行训练 # 先在test_data拟合(确保模型的实现是正确的) copy_model = deepcopy(model) overfit_trainer = Trainer(model=copy_model, train_data=test_data, dev_data=test_data, loss=loss, metrics=metric, save_path=None, batch_size=32, n_epochs=5) overfit_trainer.train() # 用train_data训练,在test_data验证 trainer = Trainer(model=model, train_data=train_data, dev_data=test_data, loss=CrossEntropyLoss(pred="output", target="label_seq"), metrics=AccuracyMetric(pred="predict", target="label_seq"), save_path=None, batch_size=32, n_epochs=5) trainer.train() print('Train finished!') # 调用Tester在test_data上评价效果 from fastNLP import Tester tester = Tester(data=test_data, model=model, metrics=AccuracyMetric(pred="predict", target="label_seq"), batch_size=4) acc = tester.test() print(acc) def test_fastnlp_1min_tutorial(self): # tutorials/fastnlp_1min_tutorial.ipynb data_path = "test/data_for_tests/tutorial_sample_dataset.csv" ds = DataSet.read_csv(data_path, headers=('raw_sentence', 'label'), sep='\t') print(ds[1]) # 将所有数字转为小写 ds.apply(lambda x: x['raw_sentence'].lower(), new_field_name='raw_sentence') # label转int ds.apply(lambda x: int(x['label']), new_field_name='target', is_target=True) def split_sent(ins): return ins['raw_sentence'].split() ds.apply(split_sent, new_field_name='words', is_input=True) # 分割训练集/验证集 train_data, dev_data = ds.split(0.3) print("Train size: ", len(train_data)) print("Test size: ", len(dev_data)) from fastNLP import Vocabulary vocab = Vocabulary(min_freq=2) train_data.apply(lambda x: [vocab.add(word) for word in x['words']]) # index句子, Vocabulary.to_index(word) train_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words', is_input=True) dev_data.apply(lambda x: [vocab.to_index(word) for word in x['words']], new_field_name='words', is_input=True) from fastNLP.models import CNNText model = CNNText((len(vocab), 50), num_classes=5, padding=2, dropout=0.1) from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric, Adam trainer = Trainer(model=model, train_data=train_data, dev_data=dev_data, loss=CrossEntropyLoss(), optimizer= Adam(), metrics=AccuracyMetric(target='target') ) trainer.train() print('Train finished!') def test_fastnlp_advanced_tutorial(self): import os os.chdir("test/tutorials/fastnlp_advanced_tutorial") from fastNLP import DataSet from fastNLP import Instance from fastNLP import Vocabulary from fastNLP import Trainer from fastNLP import Tester # ### Instance # Instance表示一个样本,由一个或者多个field(域、属性、特征)组成,每个field具有自己的名字以及值 # 在初始化Instance的时候可以定义它包含的field,使用"field_name=field_value"的写法 # In[2]: # 组织一个Instance,这个Instance由premise、hypothesis、label三个field组成 instance = Instance(premise='an premise example .', hypothesis='an hypothesis example.', label=1) instance # In[3]: data_set = DataSet([instance] * 5) data_set.append(instance) data_set[-2:] # In[4]: # 如果某一个field的类型与dataset对应的field类型不一样仍可被加入dataset中 instance2 = Instance(premise='the second premise example .', hypothesis='the second hypothesis example.', label='1') try: data_set.append(instance2) except: pass data_set[-2:] # In[5]: # 如果某一个field的名字不对,则该instance不能被append到dataset中 instance3 = Instance(premises='the third premise example .', hypothesis='the third hypothesis example.', label=1) try: data_set.append(instance3) except: print('cannot append instance') pass data_set[-2:] # In[6]: # 除了文本以外,还可以将tensor作为其中一个field的value import torch tensor_ins = Instance(image=torch.randn(5, 5), label=0) ds = DataSet() ds.append(tensor_ins) ds from fastNLP import DataSet from fastNLP import Instance # 从csv读取数据到DataSet # 类csv文件,即每一行为一个example的文件,都可以使用这种方法进行数据读取 dataset = DataSet.read_csv('tutorial_sample_dataset.csv', headers=('raw_sentence', 'label'), sep='\t') # 查看DataSet的大小 len(dataset) # In[8]: # 使用数字索引[k],获取第k个样本 dataset[0] # In[9]: # 获取的样本是一个Instance type(dataset[0]) # In[10]: # 使用数字索引[a: b],获取第a到第b个样本 dataset[0: 3] # In[11]: # 索引也可以是负数 dataset[-1] data_path = ['premise', 'hypothesis', 'label'] # 读入文件 with open(data_path[0]) as f: premise = f.readlines() with open(data_path[1]) as f: hypothesis = f.readlines() with open(data_path[2]) as f: label = f.readlines() assert len(premise) == len(hypothesis) and len(hypothesis) == len(label) # 组织DataSet data_set = DataSet() for p, h, l in zip(premise, hypothesis, label): p = p.strip() # 将行末空格去除 h = h.strip() # 将行末空格去除 data_set.append(Instance(premise=p, hypothesis=h, truth=l)) data_set[0] # ### DataSet的其他操作 # 在构建完毕DataSet后,仍然可以对DataSet的内容进行操作,函数接口为DataSet.apply() # In[13]: # 将premise域的所有文本转成小写 data_set.apply(lambda x: x['premise'].lower(), new_field_name='premise') data_set[-2:] # In[14]: # label转int data_set.apply(lambda x: int(x['truth']), new_field_name='truth') data_set[-2:] # In[15]: # 使用空格分割句子 def split_sent(ins): return ins['premise'].split() data_set.apply(split_sent, new_field_name='premise') data_set.apply(lambda x: x['hypothesis'].split(), new_field_name='hypothesis') data_set[-2:] # In[16]: # 筛选数据 origin_data_set_len = len(data_set) data_set.drop(lambda x: len(x['premise']) <= 6, inplace=True) origin_data_set_len, len(data_set) # In[17]: # 增加长度信息 data_set.apply(lambda x: [1] * len(x['premise']), new_field_name='premise_len') data_set.apply(lambda x: [1] * len(x['hypothesis']), new_field_name='hypothesis_len') data_set[-1] # In[18]: # 设定特征域、标签域 data_set.set_input("premise", "premise_len", "hypothesis", "hypothesis_len") data_set.set_target("truth") # In[19]: # 重命名field data_set.rename_field('truth', 'label') data_set[-1] # In[20]: # 切分训练、验证集、测试集 train_data, vad_data = data_set.split(0.5) dev_data, test_data = vad_data.split(0.4) len(train_data), len(dev_data), len(test_data) # In[21]: # 深拷贝一个数据集 import copy train_data_2, dev_data_2 = copy.deepcopy(train_data), copy.deepcopy(dev_data) del copy # 初始化词表,该词表最大的vocab_size为10000,词表中每个词出现的最低频率为2,''表示未知词语,''表示padding词语 # Vocabulary默认初始化参数为max_size=None, min_freq=None, unknown='', padding='' vocab = Vocabulary(max_size=10000, min_freq=2, unknown='', padding='') # 构建词表 train_data.apply(lambda x: [vocab.add(word) for word in x['premise']]) train_data.apply(lambda x: [vocab.add(word) for word in x['hypothesis']]) vocab.build_vocab() # In[23]: # 根据词表index句子 train_data.apply(lambda x: [vocab.to_index(word) for word in x['premise']], new_field_name='premise') train_data.apply(lambda x: [vocab.to_index(word) for word in x['hypothesis']], new_field_name='hypothesis') dev_data.apply(lambda x: [vocab.to_index(word) for word in x['premise']], new_field_name='premise') dev_data.apply(lambda x: [vocab.to_index(word) for word in x['hypothesis']], new_field_name='hypothesis') test_data.apply(lambda x: [vocab.to_index(word) for word in x['premise']], new_field_name='premise') test_data.apply(lambda x: [vocab.to_index(word) for word in x['hypothesis']], new_field_name='hypothesis') train_data[-1], dev_data[-1], test_data[-1] # 读入vocab文件 with open('vocab.txt', encoding='utf-8') as f: lines = f.readlines() vocabs = [] for line in lines: vocabs.append(line.strip()) # 实例化Vocabulary vocab_bert = Vocabulary(unknown=None, padding=None) # 将vocabs列表加入Vocabulary vocab_bert.add_word_lst(vocabs) # 构建词表 vocab_bert.build_vocab() # 更新unknown与padding的token文本 vocab_bert.unknown = '[UNK]' vocab_bert.padding = '[PAD]' # In[25]: # 根据词表index句子 train_data_2.apply(lambda x: [vocab_bert.to_index(word) for word in x['premise']], new_field_name='premise') train_data_2.apply(lambda x: [vocab_bert.to_index(word) for word in x['hypothesis']], new_field_name='hypothesis') dev_data_2.apply(lambda x: [vocab_bert.to_index(word) for word in x['premise']], new_field_name='premise') dev_data_2.apply(lambda x: [vocab_bert.to_index(word) for word in x['hypothesis']], new_field_name='hypothesis') train_data_2[-1], dev_data_2[-1] for data in [train_data, dev_data, test_data]: data.rename_field('premise', 'words1') data.rename_field('hypothesis', 'words2') data.rename_field('premise_len', 'seq_len1') data.rename_field('hypothesis_len', 'seq_len2') data.set_input('words1', 'words2', 'seq_len1', 'seq_len2') # step 1:加载模型参数(非必选) from fastNLP.io.config_io import ConfigSection, ConfigLoader args = ConfigSection() ConfigLoader().load_config("./data/config", {"esim_model": args}) args["vocab_size"] = len(vocab) args.data # In[27]: # step 2:加载ESIM模型 from fastNLP.models import ESIM model = ESIM(**args.data) model # In[28]: # 另一个例子:加载CNN文本分类模型 from fastNLP.models import CNNText cnn_text_model = CNNText((len(vocab), 50), num_classes=5, padding=2, dropout=0.1) from fastNLP import CrossEntropyLoss from fastNLP import Adam from fastNLP import AccuracyMetric trainer = Trainer( train_data=train_data, model=model, loss=CrossEntropyLoss(pred='pred', target='label'), metrics=AccuracyMetric(target='label'), n_epochs=3, batch_size=16, print_every=-1, validate_every=-1, dev_data=dev_data, optimizer=Adam(lr=1e-3, weight_decay=0), check_code_level=-1, metric_key='acc', use_tqdm=False, ) trainer.train() tester = Tester( data=test_data, model=model, metrics=AccuracyMetric(target='label'), batch_size=args["batch_size"], ) tester.test() def setUp(self): import os self._init_wd = os.path.abspath(os.curdir) def tearDown(self): import os os.chdir(self._init_wd)