import unittest import numpy as np from fastNLP import FieldArray class TestFieldArrayInit(unittest.TestCase): """ 1) 如果DataSet使用dict初始化,那么在add_field中会构造FieldArray: 1.1) 二维list DataSet({"x": [[1, 2], [3, 4]]}) 1.2) 二维array DataSet({"x": np.array([[1, 2], [3, 4]])}) 1.3) 三维list DataSet({"x": [[[1, 2], [3, 4]], [[1, 2], [3, 4]]]}) 2) 如果DataSet使用list of Instance 初始化,那么在append中会先对第一个样本初始化FieldArray; 然后后面的样本使用FieldArray.append进行添加。 2.1) 一维list DataSet([Instance(x=[1, 2, 3, 4])]) 2.2) 一维array DataSet([Instance(x=np.array([1, 2, 3, 4]))]) 2.3) 二维list DataSet([Instance(x=[[1, 2], [3, 4]])]) 2.4) 二维array DataSet([Instance(x=np.array([[1, 2], [3, 4]]))]) """ def test_init_v1(self): # 二维list fa = FieldArray("x", [[1, 2], [3, 4]] * 5, is_input=True) def test_init_v2(self): # 二维array fa = FieldArray("x", np.array([[1, 2], [3, 4]] * 5), is_input=True) def test_init_v3(self): # 三维list fa = FieldArray("x", [[[1, 2], [3, 4]], [[1, 2], [3, 4]]], is_input=True) def test_init_v7(self): # list of array fa = FieldArray("x", [np.array([[1, 2], [3, 4]]), np.array([[1, 2], [3, 4]])], is_input=True) self.assertEqual(fa.pytype, int) self.assertEqual(fa.dtype, np.int) def test_init_v4(self): # 一维list val = [1, 2, 3, 4] fa = FieldArray("x", [val], is_input=True) fa.append(val) def test_init_v5(self): # 一维array val = np.array([1, 2, 3, 4]) fa = FieldArray("x", [val], is_input=True) fa.append(val) def test_init_v6(self): # 二维array val = [[1, 2], [3, 4]] fa = FieldArray("x", [val], is_input=True) fa.append(val) def test_init_v7(self): # 二维list val = np.array([[1, 2], [3, 4]]) fa = FieldArray("x", [val], is_input=True) fa.append(val) class TestFieldArray(unittest.TestCase): def test_main(self): fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True) self.assertEqual(len(fa), 5) fa.append(6) self.assertEqual(len(fa), 6) self.assertEqual(fa[-1], 6) self.assertEqual(fa[0], 1) fa[-1] = 60 self.assertEqual(fa[-1], 60) self.assertEqual(fa.get(0), 1) self.assertTrue(isinstance(fa.get([0, 1, 2]), np.ndarray)) self.assertListEqual(list(fa.get([0, 1, 2])), [1, 2, 3]) def test_type_conversion(self): fa = FieldArray("x", [1.2, 2.2, 3, 4, 5], is_input=True) self.assertEqual(fa.pytype, float) self.assertEqual(fa.dtype, np.float64) fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True) fa.append(1.3333) self.assertEqual(fa.pytype, float) self.assertEqual(fa.dtype, np.float64) fa = FieldArray("y", [1.1, 2.2, 3.3, 4.4, 5.5], is_input=True) fa.append(10) self.assertEqual(fa.pytype, float) self.assertEqual(fa.dtype, np.float64) fa = FieldArray("y", ["a", "b", "c", "d"], is_input=True) fa.append("e") self.assertEqual(fa.dtype, np.str) self.assertEqual(fa.pytype, str) def test_support_np_array(self): fa = FieldArray("y", np.array([[1.1, 2.2, 3.3, 4.4, 5.5]]), is_input=True) self.assertEqual(fa.dtype, np.float64) self.assertEqual(fa.pytype, float) fa.append(np.array([1.1, 2.2, 3.3, 4.4, 5.5])) self.assertEqual(fa.dtype, np.float64) self.assertEqual(fa.pytype, float) fa = FieldArray("my_field", np.random.rand(3, 5), is_input=True) # in this case, pytype is actually a float. We do not care about it. self.assertEqual(fa.dtype, np.float64) def test_nested_list(self): fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.1, 2.2, 3.3, 4.4, 5.5]], is_input=True) self.assertEqual(fa.pytype, float) self.assertEqual(fa.dtype, np.float64) def test_getitem_v1(self): fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) self.assertEqual(fa[0], [1.1, 2.2, 3.3, 4.4, 5.5]) ans = fa[[0, 1]] self.assertTrue(isinstance(ans, np.ndarray)) self.assertTrue(isinstance(ans[0], np.ndarray)) self.assertEqual(ans[0].tolist(), [1.1, 2.2, 3.3, 4.4, 5.5]) self.assertEqual(ans[1].tolist(), [1, 2, 3, 4, 5]) self.assertEqual(ans.dtype, np.float64) def test_getitem_v2(self): x = np.random.rand(10, 5) fa = FieldArray("my_field", x, is_input=True) indices = [0, 1, 3, 4, 6] for a, b in zip(fa[indices], x[indices]): self.assertListEqual(a.tolist(), b.tolist()) def test_append(self): with self.assertRaises(Exception): fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) fa.append(0) with self.assertRaises(Exception): fa = FieldArray("y", [1.1, 2.2, 3.3, 4.4, 5.5], is_input=True) fa.append([1, 2, 3, 4, 5]) with self.assertRaises(Exception): fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) fa.append([]) with self.assertRaises(Exception): fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) fa.append(["str", 0, 0, 0, 1.89]) fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True) fa.append([1.2, 2.3, 3.4, 4.5, 5.6]) self.assertEqual(len(fa), 3) self.assertEqual(fa[2], [1.2, 2.3, 3.4, 4.5, 5.6]) def test_ignore_type(self): # 测试新添加的参数ignore_type,用来跳过类型检查 fa = FieldArray("y", [[1.1, 2.2, "jin", {}, "hahah"], [int, 2, "$", 4, 5]], is_input=True, ignore_type=True) fa.append([1.2, 2.3, str, 4.5, print]) fa = FieldArray("y", [(1, "1"), (2, "2"), (3, "3"), (4, "4")], is_target=True, ignore_type=True) class TestPadder(unittest.TestCase): def test01(self): """ 测试AutoPadder能否正常工作 :return: """ from fastNLP import AutoPadder padder = AutoPadder() content = ['This is a str', 'this is another str'] self.assertListEqual(content, padder(content, None, np.str).tolist()) content = [1, 2] self.assertListEqual(content, padder(content, None, np.int64).tolist()) content = [[1,2], [3], [4]] self.assertListEqual([[1,2], [3, 0], [4, 0]], padder(content, None, np.int64).tolist()) content = [ [[1, 2, 3], [4, 5], [7,8,9,10]], [[1]] ] self.assertListEqual(content, padder(content, None, np.int64).tolist()) def test02(self): """ 测试EngChar2DPadder能不能正确使用 :return: """ from fastNLP import EngChar2DPadder padder = EngChar2DPadder(pad_length=0) contents = [1, 2] # 不能是1维 with self.assertRaises(ValueError): padder(contents, None, np.int64) contents = [[1, 2]] # 不能是2维 with self.assertRaises(ValueError): padder(contents, None, np.int64) contents = [[[[1, 2]]]] # 不能是3维以上 with self.assertRaises(ValueError): padder(contents, None, np.int64) contents = [ [[1, 2, 3], [4, 5], [7,8,9,10]], [[1]] ] self.assertListEqual([[[1, 2, 3, 0], [4, 5, 0, 0], [7, 8, 9, 10]], [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]], padder(contents, None, np.int64).tolist()) padder = EngChar2DPadder(pad_length=5, pad_val=-100) self.assertListEqual( [[[1, 2, 3, -100, -100], [4, 5, -100, -100, -100], [7, 8, 9, 10, -100]], [[1, -100, -100, -100, -100], [-100, -100, -100, -100, -100], [-100, -100, -100, -100, -100]]], padder(contents, None, np.int64).tolist() ) def test_None_dtype(self): from fastNLP import AutoPadder padder = AutoPadder() content = [ [[1, 2, 3], [4, 5], [7, 8, 9, 10]], [[1]] ] ans = padder(content, None, None).tolist() self.assertListEqual(content, ans)