{ "cells": [ { "cell_type": "markdown", "id": "aec0fde7", "metadata": {}, "source": [ "# T0. trainer 和 evaluator 的基本使用\n", "\n", "  1   trainer 和 evaluator 的基本关系\n", " \n", "    1.1   trainer 和 evaluater 的初始化\n", "\n", "    1.2   driver 的含义与使用要求\n", "\n", "    1.3   trainer 内部初始化 evaluater\n", "\n", "  2   使用 trainer 训练模型\n", "\n", "    2.1   argmax 模型实例\n", "\n", "    2.2   trainer 的参数匹配\n", "\n", "    2.3   trainer 的实际使用 \n", "\n", "  3   使用 evaluator 评测模型\n", " \n", "    3.1   trainer 外部初始化的 evaluator\n", "\n", "    3.2   trainer 内部初始化的 evaluator " ] }, { "cell_type": "markdown", "id": "09ea669a", "metadata": {}, "source": [ "## 1. trainer 和 evaluator 的基本关系\n", "\n", "### 1.1 trainer 和 evaluator 的初始化\n", "\n", "在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n", "\n", "  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n", "\n", "在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n", "\n", "  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?\n", "\n", "\n", "```python\n", "trainer = Trainer(\n", " model=model,\n", " train_dataloader=train_dataloader,\n", " optimizers=optimizer,\n", "\t...\n", "\tdriver=\"torch\",\n", "\tdevice=0,\n", "\t...\n", ")\n", "...\n", "evaluator = Evaluator(\n", " model=model,\n", " dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()} \n", " ...\n", " driver=trainer.driver,\n", "\tdevice=None,\n", " ...\n", ")\n", "```" ] }, { "cell_type": "markdown", "id": "3c11fe1a", "metadata": {}, "source": [ "### 1.2 driver 的含义与使用要求\n", "\n", "在`fastNLP 0.8`中,**`driver`**这一概念被用来表示**控制具体训练的各个步骤的最终执行部分**\n", "\n", "  例如神经网络前向、后向传播的具体执行、网络参数的优化和数据在设备间的迁移等\n", "\n", "在`fastNLP 0.8`中,**`Trainer`和`Evaluator`都依赖于具体的`driver`来完成整体的工作流程**\n", "\n", "  具体`driver`与`Trainer`以及`Evaluator`之间的关系请参考`fastNLP 0.8`的框架设计\n", "\n", "注:在同一脚本中,`Trainer`和`Evaluator`使用的`driver`应当保持一致\n", "\n", "  一个不能违背的原则在于:**不要将多卡的`driver`前使用单卡的`driver`**(???),这样使用可能会带来很多意想不到的错误。" ] }, { "cell_type": "markdown", "id": "2cac4a1a", "metadata": {}, "source": [ "### 1.3 Trainer 内部初始化 Evaluator\n", "\n", "在`fastNLP 0.8`中,如果在**初始化`Trainer`时**,**传入参数`evaluator_dataloaders`和`metrics`**\n", "\n", "  则在`Trainer`内部,也会初始化单独的`Evaluator`来帮助训练过程中对验证集的评测\n", "\n", "```python\n", "trainer = Trainer(\n", " model=model,\n", " train_dataloader=train_dataloader,\n", " optimizers=optimizer,\n", "\t...\n", "\tdriver=\"torch\",\n", "\tdevice=0,\n", "\t...\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()},\n", "\t...\n", ")\n", "```" ] }, { "cell_type": "markdown", "id": "0c9c7dda", "metadata": {}, "source": [ "## 2. 使用 trainer 训练模型" ] }, { "cell_type": "markdown", "id": "524ac200", "metadata": {}, "source": [ "### 2.1 argmax 模型实例\n", "\n", "本节将通过训练`argmax`模型,简单介绍如何`Trainer`模块的使用方式\n", "\n", "  使用`pytorch`定义`argmax`模型,输入一组固定维度的向量,输出其中数值最大的数的索引\n", "\n", "  除了添加`pytorch`要求的`forward`方法外,还需要添加 **`train_step`** 和 **`evaluate_step`** 这两个方法" ] }, { "cell_type": "code", "execution_count": null, "id": "5314482b", "metadata": { "pycharm": { "is_executing": true } }, "outputs": [], "source": [ "import torch\n", "import torch.nn as nn\n", "\n", "class ArgMaxModel(nn.Module):\n", " def __init__(self, num_labels, feature_dimension):\n", " super(ArgMaxModel, self).__init__()\n", " self.num_labels = num_labels\n", "\n", " self.linear1 = nn.Linear(in_features=feature_dimension, out_features=10)\n", " self.ac1 = nn.ReLU()\n", " self.linear2 = nn.Linear(in_features=10, out_features=10)\n", " self.ac2 = nn.ReLU()\n", " self.output = nn.Linear(in_features=10, out_features=num_labels)\n", " self.loss_fn = nn.CrossEntropyLoss()\n", "\n", " def forward(self, x):\n", " x = self.ac1(self.linear1(x))\n", " x = self.ac2(self.linear2(x))\n", " x = self.output(x)\n", " return x\n", "\n", " def train_step(self, x, y):\n", " x = self(x)\n", " return {\"loss\": self.loss_fn(x, y)}\n", "\n", " def evaluate_step(self, x, y):\n", " x = self(x)\n", " x = torch.max(x, dim=-1)[1]\n", " return {\"pred\": x, \"target\": y}" ] }, { "cell_type": "markdown", "id": "ca897322", "metadata": {}, "source": [ "在`fastNLP 0.8`中,**函数`train_step`是`Trainer`中参数`train_fn`的默认值**\n", "\n", "  由于,在`Trainer`训练时,**`Trainer`通过参数`_train_fn_`对应的模型方法获得当前数据批次的损失值**\n", "\n", "  因此,在`Trainer`训练时,`Trainer`首先会寻找模型是否定义了`train_step`这一方法\n", "\n", "    如果没有找到,那么`Trainer`会默认使用模型的`forward`函数来进行训练的前向传播过程\n", "\n", "注:在`fastNLP 0.8`中,`Trainer`要求模型通过`train_step`来返回一个字典,将损失值作为`loss`的键值\n", "\n", "  此外,这里也可以通过传入`Trainer`的参数`output_mapping`来实现高度化的定制,具体请见这一note(???)\n", "\n", "同样,在`fastNLP 0.8`中,**函数`evaluate_step`是`Evaluator`中参数`evaluate_fn`的默认值**\n", "\n", "  在`Evaluator`测试时,**`Evaluator`通过参数`evaluate_fn`对应的模型方法获得当前数据批次的评测结果**\n", "\n", "  从用户角度,模型通过`evaluate_step`方法来返回一个字典,内容与传入`Evaluator`的`metrics`一致\n", "\n", "" ] }, { "cell_type": "markdown", "id": "fb3272eb", "metadata": {}, "source": [ "### 2.2 trainer 的参数匹配\n", "\n", "`fastNLP 0.8`中的参数匹配涉及到两个方面,一是在模型训练或者评测的前向传播过程中,如果从`dataloader`中出来一个`batch`的数据是一个字典,那么我们会查看模型的`train_step`和`evaluate_step`方法的参数签名,然后对于每一个参数,我们会根据其名字从 batch 这一字典中选择出对应的数据传入进去。例如在接下来的定义`Dataset`的部分,注意`ArgMaxDatset`的`__getitem__`方法,您可以通过在`Trainer`和`Evaluator`中设置参数 `model_wo_auto_param_call`来关闭这一行为。当您关闭了这一行为后,我们会将`batch`直接传给您的`train_step`、`evaluate_step`或者 `forward`函数。\n", "\n", "二是在传入`Trainer`或者`Evaluator metrics`后,我们会在需要评测的时间点主动调用`metrics`来对`evaluate_dataloaders`进行评测,这一功能主要就是通过对`metrics`的`update`方法和一个`batch`的数据进行参数评测实现的。首先需要明确的是一个 metric 的计算通常分为 `update` 和 `get_metric`两步,其中`update`表示更新一个`batch`的评测数据,`get_metric` 表示根据已经得到的评测数据计算出最终的评测值,例如对于 `Accuracy`来说,其在`update`的时候会更新一个`batch`计算正确的数量 right_num 和计算错误的数量 total_num,最终在 `get_metric` 时返回评测值`right_num / total_num`。\n", "\n", "因为`fastNLP 0.8`的`metrics`是自动计算的(只需要传给`Trainer`或者`Evaluator`),因此其一定依赖于参数匹配。对于从`evaluate_dataloader`中生成的一个`batch`的数据,我们会查看传给 `Trainer`(最终是传给`Evaluator`)和`Evaluator`的每一个`metric`,然后查看其`update`函数的函数签名,然后根据每一个参数的名字从`batch`字典中选择出对应的数据传入进去。" ] }, { "cell_type": "markdown", "id": "f62b7bb1", "metadata": {}, "source": [ "### 2.3 trainer的实际使用\n", "\n", "接下来我们创建用于训练的 dataset,其接受三个参数:数据维度、数据量和随机数种子,生成指定数量的维度为 `feature_dimension` 向量,而每一个向量的标签就是该向量中最大值的索引。" ] }, { "cell_type": "code", "execution_count": 2, "id": "fe612e61", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from torch.utils.data import Dataset\n", "\n", "class ArgMaxDatset(Dataset):\n", " def __init__(self, feature_dimension, data_num=1000, seed=0):\n", " self.num_labels = feature_dimension\n", " self.feature_dimension = feature_dimension\n", " self.data_num = data_num\n", " self.seed = seed\n", "\n", " g = torch.Generator()\n", " g.manual_seed(1000)\n", " self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()\n", " self.y = torch.max(self.x, dim=-1)[1]\n", "\n", " def __len__(self):\n", " return self.data_num\n", "\n", " def __getitem__(self, item):\n", " return {\"x\": self.x[item], \"y\": self.y[item]}" ] }, { "cell_type": "markdown", "id": "2cb96332", "metadata": {}, "source": [ "现在准备好数据和模型。" ] }, { "cell_type": "code", "execution_count": 3, "id": "76172ef8", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from torch.utils.data import DataLoader\n", "\n", "train_dataset = ArgMaxDatset(feature_dimension=10, data_num=1000)\n", "evaluate_dataset = ArgMaxDatset(feature_dimension=10, data_num=100)\n", "\n", "train_dataloader = DataLoader(train_dataset, batch_size=8, shuffle=True)\n", "evaluate_dataloader = DataLoader(evaluate_dataset, batch_size=8)\n", "\n", "# num_labels 设置为 10,与 feature_dimension 保持一致,因为我们是预测十个位置中哪一个的概率最大。\n", "model = ArgMaxModel(num_labels=10, feature_dimension=10)" ] }, { "cell_type": "markdown", "id": "4e7d25ee", "metadata": {}, "source": [ "将优化器也定义好。" ] }, { "cell_type": "code", "execution_count": 4, "id": "dc28a2d9", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from torch.optim import SGD\n", "\n", "optimizer = SGD(model.parameters(), lr=0.001)" ] }, { "cell_type": "markdown", "id": "4f1fba81", "metadata": {}, "source": [ "现在万事俱备,开始使用 Trainer 进行训练!" ] }, { "cell_type": "code", "execution_count": 5, "id": "b51b7a2d", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [ { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "['__annotations__',\n", " '__class__',\n", " '__delattr__',\n", " '__dict__',\n", " '__dir__',\n", " '__doc__',\n", " '__eq__',\n", " '__format__',\n", " '__ge__',\n", " '__getattribute__',\n", " '__gt__',\n", " '__hash__',\n", " '__init__',\n", " '__init_subclass__',\n", " '__le__',\n", " '__lt__',\n", " '__module__',\n", " '__ne__',\n", " '__new__',\n", " '__reduce__',\n", " '__reduce_ex__',\n", " '__repr__',\n", " '__setattr__',\n", " '__sizeof__',\n", " '__str__',\n", " '__subclasshook__',\n", " '__weakref__',\n", " '_check_callback_called_legality',\n", " '_check_train_batch_loop_legality',\n", " '_custom_callbacks',\n", " '_driver',\n", " '_evaluate_dataloaders',\n", " '_fetch_matched_fn_callbacks',\n", " '_set_num_eval_batch_per_dl',\n", " '_train_batch_loop',\n", " '_train_dataloader',\n", " '_train_step',\n", " '_train_step_signature_fn',\n", " 'accumulation_steps',\n", " 'add_callback_fn',\n", " 'backward',\n", " 'batch_idx_in_epoch',\n", " 'batch_step_fn',\n", " 'callback_manager',\n", " 'check_batch_step_fn',\n", " 'cur_epoch_idx',\n", " 'data_device',\n", " 'dataloader',\n", " 'device',\n", " 'driver',\n", " 'driver_name',\n", " 'epoch_validate',\n", " 'evaluate_batch_step_fn',\n", " 'evaluate_dataloaders',\n", " 'evaluate_every',\n", " 'evaluate_fn',\n", " 'evaluator',\n", " 'extract_loss_from_outputs',\n", " 'fp16',\n", " 'get_no_sync_context',\n", " 'global_forward_batches',\n", " 'has_checked_train_batch_loop',\n", " 'input_mapping',\n", " 'kwargs',\n", " 'larger_better',\n", " 'load',\n", " 'load_model',\n", " 'marker',\n", " 'metrics',\n", " 'model',\n", " 'model_device',\n", " 'monitor',\n", " 'move_data_to_device',\n", " 'n_epochs',\n", " 'num_batches_per_epoch',\n", " 'on',\n", " 'on_after_backward',\n", " 'on_after_optimizers_step',\n", " 'on_after_trainer_initialized',\n", " 'on_after_zero_grad',\n", " 'on_before_backward',\n", " 'on_before_optimizers_step',\n", " 'on_before_zero_grad',\n", " 'on_exception',\n", " 'on_fetch_data_begin',\n", " 'on_fetch_data_end',\n", " 'on_load_checkpoint',\n", " 'on_load_model',\n", " 'on_sanity_check_begin',\n", " 'on_sanity_check_end',\n", " 'on_save_checkpoint',\n", " 'on_save_model',\n", " 'on_train_batch_begin',\n", " 'on_train_batch_end',\n", " 'on_train_begin',\n", " 'on_train_end',\n", " 'on_train_epoch_begin',\n", " 'on_train_epoch_end',\n", " 'on_validate_begin',\n", " 'on_validate_end',\n", " 'optimizers',\n", " 'output_mapping',\n", " 'run',\n", " 'save',\n", " 'save_model',\n", " 'set_grad_to_none',\n", " 'state',\n", " 'step',\n", " 'step_validate',\n", " 'total_batches',\n", " 'train_batch_loop',\n", " 'train_dataloader',\n", " 'train_fn',\n", " 'train_step',\n", " 'trainer_state',\n", " 'zero_grad']" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from fastNLP import Trainer\n", "\n", "# 定义一个 Trainer\n", "trainer = Trainer(\n", " model=model,\n", " driver=\"torch\", # 使用 pytorch 进行训练\n", " device=0, # 使用 GPU:0\n", " train_dataloader=train_dataloader,\n", " optimizers=optimizer,\n", " n_epochs=10, # 训练 40 个 epoch\n", " progress_bar=\"rich\"\n", ")\n", "dir(trainer)" ] }, { "cell_type": "code", "execution_count": 8, "id": "f8fe9c32", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "FullArgSpec(args=['self', 'num_train_batch_per_epoch', 'num_eval_batch_per_dl', 'num_eval_sanity_batch', 'resume_from', 'resume_training', 'catch_KeyboardInterrupt'], varargs=None, varkw=None, defaults=(-1, -1, 2, None, True, None), kwonlyargs=[], kwonlydefaults=None, annotations={'num_train_batch_per_epoch': , 'num_eval_batch_per_dl': , 'num_eval_sanity_batch': , 'resume_from': , 'resume_training': })\n" ] } ], "source": [ "import inspect \n", "\n", "print(inspect.getfullargspec(trainer.run))" ] }, { "cell_type": "markdown", "id": "6e202d6e", "metadata": {}, "source": [ "没有问题,那么开始真正的训练!" ] }, { "cell_type": "code", "execution_count": 9, "id": "ba047ead", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run()" ] }, { "cell_type": "markdown", "id": "eb8ca6cf", "metadata": {}, "source": [ "## 3. 使用 evaluator 评测模型" ] }, { "cell_type": "markdown", "id": "c16c5fa4", "metadata": {}, "source": [ "模型训练好了我们开始使用 Evaluator 进行评测,查看效果怎么样吧。" ] }, { "cell_type": "code", "execution_count": 10, "id": "1c6b6b36", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "from fastNLP import Evaluator\n", "from fastNLP.core.metrics import Accuracy\n", "\n", "evaluator = Evaluator(\n", " model=model,\n", " driver=trainer.driver, # 使用 trainer 已经启动的 driver;\n", " device=None,\n", " dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()} # 注意这里一定得是一个字典;\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "id": "257061df", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "['__annotations__',\n", " '__class__',\n", " '__delattr__',\n", " '__dict__',\n", " '__dir__',\n", " '__doc__',\n", " '__eq__',\n", " '__format__',\n", " '__ge__',\n", " '__getattribute__',\n", " '__gt__',\n", " '__hash__',\n", " '__init__',\n", " '__init_subclass__',\n", " '__le__',\n", " '__lt__',\n", " '__module__',\n", " '__ne__',\n", " '__new__',\n", " '__reduce__',\n", " '__reduce_ex__',\n", " '__repr__',\n", " '__setattr__',\n", " '__sizeof__',\n", " '__str__',\n", " '__subclasshook__',\n", " '__weakref__',\n", " '_dist_sampler',\n", " '_evaluate_batch_loop',\n", " '_evaluate_step',\n", " '_evaluate_step_signature_fn',\n", " '_metric_wrapper',\n", " '_metrics',\n", " 'dataloaders',\n", " 'device',\n", " 'driver',\n", " 'evaluate_batch_loop',\n", " 'evaluate_batch_step_fn',\n", " 'evaluate_fn',\n", " 'evaluate_step',\n", " 'finally_progress_bar',\n", " 'get_dataloader_metric',\n", " 'input_mapping',\n", " 'metrics',\n", " 'metrics_wrapper',\n", " 'model',\n", " 'model_use_eval_mode',\n", " 'move_data_to_device',\n", " 'output_mapping',\n", " 'progress_bar',\n", " 'remove_progress_bar',\n", " 'reset',\n", " 'run',\n", " 'separator',\n", " 'start_progress_bar',\n", " 'update',\n", " 'update_progress_bar',\n", " 'verbose']" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "dir(evaluator)" ] }, { "cell_type": "code", "execution_count": 12, "id": "f7cb0165", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [ { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{'acc#acc': 0.3}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.3\u001b[0m\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{'acc#acc': 0.3}" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluator.run()" ] }, { "cell_type": "markdown", "id": "dd9f68fa", "metadata": {}, "source": [ "## 4. 在 trainer 中加入 metric 来自动评测;" ] }, { "cell_type": "markdown", "id": "ca97c9a4", "metadata": {}, "source": [ "现在我们尝试在训练过程中进行评测。" ] }, { "cell_type": "code", "execution_count": 13, "id": "183c7d19", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [], "source": [ "# 重新定义一个 Trainer\n", "\n", "trainer = Trainer(\n", " model=model,\n", " driver=trainer.driver, # 因为我们是在同一脚本中,因此这里的 driver 同样需要重用;\n", " train_dataloader=train_dataloader,\n", " evaluate_dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()},\n", " optimizers=optimizer,\n", " n_epochs=10, # 训练 40 个 epoch;\n", " evaluate_every=-1, # 表示每一个 epoch 的结束会进行 evaluate;\n", ")" ] }, { "cell_type": "markdown", "id": "714cc404", "metadata": {}, "source": [ "再次训练。" ] }, { "cell_type": "code", "execution_count": 14, "id": "2e4daa2c", "metadata": { "pycharm": { "is_executing": false } }, "outputs": [ { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "trainer.run()" ] }, { "cell_type": "code", "execution_count": 15, "id": "eabda5eb", "metadata": {}, "outputs": [], "source": [ "evaluator = Evaluator(\n", " model=model,\n", " driver=trainer.driver, # 使用 trainer 已经启动的 driver;\n", " dataloaders=evaluate_dataloader,\n", " metrics={'acc': Accuracy()} # 注意这里一定得是一个字典;\n", ")" ] }, { "cell_type": "code", "execution_count": 16, "id": "a310d157", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n"
      ],
      "text/plain": []
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "
\n",
       "
\n" ], "text/plain": [ "\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
{'acc#acc': 0.5}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.5\u001b[0m\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "{'acc#acc': 0.5}" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "evaluator.run()" ] }, { "cell_type": "code", "execution_count": null, "id": "f1ef78f0", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 5 }