import os import sys sys.path.append("..") import argparse from fastNLP.loader.config_loader import ConfigLoader, ConfigSection from fastNLP.core.trainer import SeqLabelTrainer from fastNLP.loader.dataset_loader import POSDatasetLoader, BaseLoader from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle from fastNLP.saver.model_saver import ModelSaver from fastNLP.loader.model_loader import ModelLoader from fastNLP.core.tester import SeqLabelTester from fastNLP.models.sequence_modeling import SeqLabeling from fastNLP.core.predictor import SeqLabelInfer from fastNLP.core.optimizer import Optimizer parser = argparse.ArgumentParser() parser.add_argument("-s", "--save", type=str, default="./seq_label/", help="path to save pickle files") parser.add_argument("-t", "--train", type=str, default="./data_for_tests/people.txt", help="path to the training data") parser.add_argument("-c", "--config", type=str, default="./data_for_tests/config", help="path to the config file") parser.add_argument("-m", "--model_name", type=str, default="seq_label_model.pkl", help="the name of the model") parser.add_argument("-i", "--infer", type=str, default="data_for_tests/people_infer.txt", help="data used for inference") args = parser.parse_args() pickle_path = args.save model_name = args.model_name config_dir = args.config data_path = args.train data_infer_path = args.infer def infer(): # Load infer configuration, the same as test test_args = ConfigSection() ConfigLoader("config.cfg", "").load_config(config_dir, {"POS_infer": test_args}) # fetch dictionary size and number of labels from pickle files word2index = load_pickle(pickle_path, "word2id.pkl") test_args["vocab_size"] = len(word2index) index2label = load_pickle(pickle_path, "id2class.pkl") test_args["num_classes"] = len(index2label) # Define the same model model = SeqLabeling(test_args) # Dump trained parameters into the model ModelLoader.load_pytorch(model, os.path.join(pickle_path, model_name)) print("model loaded!") # Data Loader raw_data_loader = BaseLoader("xxx", data_infer_path) infer_data = raw_data_loader.load_lines() # Inference interface infer = SeqLabelInfer(pickle_path) results = infer.predict(model, infer_data) for res in results: print(res) print("Inference finished!") def train_and_test(): # Config Loader trainer_args = ConfigSection() model_args = ConfigSection() ConfigLoader("config.cfg", "").load_config(config_dir, { "test_seq_label_trainer": trainer_args, "test_seq_label_model": model_args}) # Data Loader pos_loader = POSDatasetLoader("xxx", data_path) train_data = pos_loader.load_lines() # Preprocessor p = SeqLabelPreprocess() data_train, data_dev = p.run(train_data, pickle_path=pickle_path, train_dev_split=0.5) model_args["vocab_size"] = p.vocab_size model_args["num_classes"] = p.num_classes # Trainer: two definition styles # 1 # trainer = SeqLabelTrainer(trainer_args.data) # 2 trainer = SeqLabelTrainer( epochs=trainer_args["epochs"], batch_size=trainer_args["batch_size"], validate=trainer_args["validate"], use_cuda=trainer_args["use_cuda"], pickle_path=pickle_path, save_best_dev=trainer_args["save_best_dev"], model_name=model_name, optimizer=Optimizer("SGD", lr=0.01, momentum=0.9), ) # Model model = SeqLabeling(model_args) # Start training trainer.train(model, data_train, data_dev) print("Training finished!") # Saver saver = ModelSaver(os.path.join(pickle_path, model_name)) saver.save_pytorch(model) print("Model saved!") del model, trainer, pos_loader # Define the same model model = SeqLabeling(model_args) # Dump trained parameters into the model ModelLoader.load_pytorch(model, os.path.join(pickle_path, model_name)) print("model loaded!") # Load test configuration tester_args = ConfigSection() ConfigLoader("config.cfg", "").load_config(config_dir, {"test_seq_label_tester": tester_args}) # Tester tester = SeqLabelTester(save_output=False, save_loss=False, save_best_dev=False, batch_size=4, use_cuda=False, pickle_path=pickle_path, model_name="seq_label_in_test.pkl", print_every_step=1 ) # Start testing with validation data tester.test(model, data_dev) # print test results print(tester.show_matrices()) print("model tested!") if __name__ == "__main__": train_and_test() # infer()