import unittest import numpy as np import torch from fastNLP.core.callback import EarlyStopCallback, GradientClipCallback, LRScheduler, ControlC, \ LRFinder, TensorboardCallback from fastNLP import DataSet from fastNLP import Instance from fastNLP import BCELoss from fastNLP import AccuracyMetric from fastNLP import SGD from fastNLP import Trainer from fastNLP.models.base_model import NaiveClassifier from fastNLP.core.callback import EarlyStopError def prepare_env(): def prepare_fake_dataset(): mean = np.array([-3, -3]) cov = np.array([[1, 0], [0, 1]]) class_A = np.random.multivariate_normal(mean, cov, size=(1000,)) mean = np.array([3, 3]) cov = np.array([[1, 0], [0, 1]]) class_B = np.random.multivariate_normal(mean, cov, size=(1000,)) data_set = DataSet([Instance(x=[float(item[0]), float(item[1])], y=[0.0]) for item in class_A] + [Instance(x=[float(item[0]), float(item[1])], y=[1.0]) for item in class_B]) return data_set data_set = prepare_fake_dataset() data_set.set_input("x") data_set.set_target("y") model = NaiveClassifier(2, 1) return data_set, model class TestCallback(unittest.TestCase): def test_gradient_clip(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=20, print_every=50, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[GradientClipCallback(model.parameters(), clip_value=2)], check_code_level=2) trainer.train() def test_early_stop(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, optimizer=SGD(lr=0.01), loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=20, print_every=50, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[EarlyStopCallback(5)], check_code_level=2) trainer.train() def test_lr_scheduler(self): data_set, model = prepare_env() optimizer = torch.optim.SGD(model.parameters(), lr=0.01) trainer = Trainer(data_set, model, optimizer=optimizer, loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=5, print_every=50, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[LRScheduler(torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1))], check_code_level=2) trainer.train() def test_KeyBoardInterrupt(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=5, print_every=50, use_tqdm=False, callbacks=[ControlC(False)], check_code_level=2) trainer.train() def test_LRFinder(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=5, print_every=50, use_tqdm=False, callbacks=[LRFinder(len(data_set) // 32)], check_code_level=2) trainer.train() def test_TensorboardCallback(self): data_set, model = prepare_env() trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=5, print_every=50, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[TensorboardCallback("loss", "metric")], check_code_level=2) trainer.train() def test_readonly_property(self): from fastNLP.core.callback import Callback passed_epochs = [] total_epochs = 5 class MyCallback(Callback): def __init__(self): super(MyCallback, self).__init__() def on_epoch_begin(self): passed_epochs.append(self.epoch) print(self.n_epochs, self.n_steps, self.batch_size) print(self.model) print(self.optimizer) data_set, model = prepare_env() trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"), batch_size=32, n_epochs=total_epochs, print_every=50, dev_data=data_set, metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[MyCallback()], check_code_level=2) trainer.train() assert passed_epochs == list(range(1, total_epochs + 1))