import torch as tc import torch.nn as nn import torch.nn.functional as F import sys import os import math from fastNLP.core.const import Const class RNNModel(nn.Module): def __init__(self, input_size, hidden_size, num_layers, bidrect, dropout): super(RNNModel, self).__init__() if num_layers <= 1: dropout = 0.0 self.rnn = nn.GRU(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True, dropout=dropout, bidirectional=bidrect) self.number = (2 if bidrect else 1) * num_layers def forward(self, x, mask): ''' mask: (batch_size, seq_len) x: (batch_size, seq_len, input_size) ''' lens = (mask).long().sum(dim=1) lens, idx_sort = tc.sort(lens, descending=True) _, idx_unsort = tc.sort(idx_sort) x = x[idx_sort] x = nn.utils.rnn.pack_padded_sequence(x, lens, batch_first=True) self.rnn.flatten_parameters() y, h = self.rnn(x) y, lens = nn.utils.rnn.pad_packed_sequence(y, batch_first=True) h = h.transpose(0,1).contiguous() #make batch size first y = y[idx_unsort] #(batch_size, seq_len, bid * hid_size) h = h[idx_unsort] #(batch_size, number, hid_size) return y, h class Contexualizer(nn.Module): def __init__(self, input_size, hidden_size, num_layers=1, dropout=0.3): super(Contexualizer, self).__init__() self.rnn = RNNModel(input_size, hidden_size, num_layers, True, dropout) self.output_size = hidden_size * 2 self.reset_parameters() def reset_parameters(self): weights = self.rnn.rnn.all_weights for w1 in weights: for w2 in w1: if len(list(w2.size())) <= 1: w2.data.fill_(0) else: nn.init.xavier_normal_(w2.data, gain=1.414) def forward(self, s, mask): y = self.rnn(s, mask)[0] # (batch_size, seq_len, 2 * hidden_size) return y class ConcatAttention_Param(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.2): super(ConcatAttention_Param, self).__init__() self.ln = nn.Linear(input_size + hidden_size, hidden_size) self.v = nn.Linear(hidden_size, 1, bias=False) self.vq = nn.Parameter(tc.rand(hidden_size)) self.drop = nn.Dropout(dropout) self.output_size = input_size self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.v.weight.data) nn.init.xavier_uniform_(self.ln.weight.data) self.ln.bias.data.fill_(0) def forward(self, h, mask): ''' h: (batch_size, len, input_size) mask: (batch_size, len) ''' vq = self.vq.view(1,1,-1).expand(h.size(0), h.size(1), self.vq.size(0)) s = self.v(tc.tanh(self.ln(tc.cat([h,vq],-1)))).squeeze(-1) # (batch_size, len) s = s - ((mask == 0).float() * 10000) a = tc.softmax(s, dim=1) r = a.unsqueeze(-1) * h # (batch_size, len, input_size) r = tc.sum(r, dim=1) # (batch_size, input_size) return self.drop(r) def get_2dmask(mask_hq, mask_hp, siz=None): if siz is None: siz = (mask_hq.size(0), mask_hq.size(1), mask_hp.size(1)) mask_mat = 1 if mask_hq is not None: mask_mat = mask_mat * mask_hq.unsqueeze(2).expand(siz) if mask_hp is not None: mask_mat = mask_mat * mask_hp.unsqueeze(1).expand(siz) return mask_mat def Attention(hq, hp, mask_hq, mask_hp, my_method): standard_size = (hq.size(0), hq.size(1), hp.size(1), hq.size(-1)) mask_mat = get_2dmask(mask_hq, mask_hp, standard_size[:-1]) hq_mat = hq.unsqueeze(2).expand(standard_size) hp_mat = hp.unsqueeze(1).expand(standard_size) s = my_method(hq_mat, hp_mat) # (batch_size, len_q, len_p) s = s - ((mask_mat == 0).float() * 10000) a = tc.softmax(s, dim=1) q = a.unsqueeze(-1) * hq_mat #(batch_size, len_q, len_p, input_size) q = tc.sum(q, dim=1) #(batch_size, len_p, input_size) return q class ConcatAttention(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.2, input_size_2=-1): super(ConcatAttention, self).__init__() if input_size_2 < 0: input_size_2 = input_size self.ln = nn.Linear(input_size + input_size_2, hidden_size) self.v = nn.Linear(hidden_size, 1, bias=False) self.drop = nn.Dropout(dropout) self.output_size = input_size self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.v.weight.data) nn.init.xavier_uniform_(self.ln.weight.data) self.ln.bias.data.fill_(0) def my_method(self, hq_mat, hp_mat): s = tc.cat([hq_mat, hp_mat], dim=-1) s = self.v(tc.tanh(self.ln(s))).squeeze(-1) #(batch_size, len_q, len_p) return s def forward(self, hq, hp, mask_hq=None, mask_hp=None): ''' hq: (batch_size, len_q, input_size) mask_hq: (batch_size, len_q) ''' return self.drop(Attention(hq, hp, mask_hq, mask_hp, self.my_method)) class MinusAttention(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.2): super(MinusAttention, self).__init__() self.ln = nn.Linear(input_size, hidden_size) self.v = nn.Linear(hidden_size, 1, bias=False) self.drop = nn.Dropout(dropout) self.output_size = input_size self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.v.weight.data) nn.init.xavier_uniform_(self.ln.weight.data) self.ln.bias.data.fill_(0) def my_method(self, hq_mat, hp_mat): s = hq_mat - hp_mat s = self.v(tc.tanh(self.ln(s))).squeeze(-1) #(batch_size, len_q, len_p) s[j,t] return s def forward(self, hq, hp, mask_hq=None, mask_hp=None): return self.drop(Attention(hq, hp, mask_hq, mask_hp, self.my_method)) class DotProductAttention(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.2): super(DotProductAttention, self).__init__() self.ln = nn.Linear(input_size, hidden_size) self.v = nn.Linear(hidden_size, 1, bias=False) self.drop = nn.Dropout(dropout) self.output_size = input_size self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.v.weight.data) nn.init.xavier_uniform_(self.ln.weight.data) self.ln.bias.data.fill_(0) def my_method(self, hq_mat, hp_mat): s = hq_mat * hp_mat s = self.v(tc.tanh(self.ln(s))).squeeze(-1) #(batch_size, len_q, len_p) s[j,t] return s def forward(self, hq, hp, mask_hq=None, mask_hp=None): return self.drop(Attention(hq, hp, mask_hq, mask_hp, self.my_method)) class BiLinearAttention(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.2, input_size_2=-1): super(BiLinearAttention, self).__init__() input_size_2 = input_size if input_size_2 < 0 else input_size_2 self.ln = nn.Linear(input_size_2, input_size) self.drop = nn.Dropout(dropout) self.output_size = input_size self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.ln.weight.data) self.ln.bias.data.fill_(0) def my_method(self, hq, hp, mask_p): # (bs, len, input_size) hp = self.ln(hp) hp = hp * mask_p.unsqueeze(-1) s = tc.matmul(hq, hp.transpose(-1,-2)) return s def forward(self, hq, hp, mask_hq=None, mask_hp=None): standard_size = (hq.size(0), hq.size(1), hp.size(1), hq.size(-1)) mask_mat = get_2dmask(mask_hq, mask_hp, standard_size[:-1]) s = self.my_method(hq, hp, mask_hp) # (batch_size, len_q, len_p) s = s - ((mask_mat == 0).float() * 10000) a = tc.softmax(s, dim=1) hq_mat = hq.unsqueeze(2).expand(standard_size) q = a.unsqueeze(-1) * hq_mat #(batch_size, len_q, len_p, input_size) q = tc.sum(q, dim=1) #(batch_size, len_p, input_size) return self.drop(q) class AggAttention(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.2): super(AggAttention, self).__init__() self.ln = nn.Linear(input_size + hidden_size, hidden_size) self.v = nn.Linear(hidden_size, 1, bias=False) self.vq = nn.Parameter(tc.rand(hidden_size, 1)) self.drop = nn.Dropout(dropout) self.output_size = input_size self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.vq.data) nn.init.xavier_uniform_(self.v.weight.data) nn.init.xavier_uniform_(self.ln.weight.data) self.ln.bias.data.fill_(0) self.vq.data = self.vq.data[:,0] def forward(self, hs, mask): ''' hs: [(batch_size, len_q, input_size), ...] mask: (batch_size, len_q) ''' hs = tc.cat([h.unsqueeze(0) for h in hs], dim=0)# (4, batch_size, len_q, input_size) vq = self.vq.view(1,1,1,-1).expand(hs.size(0), hs.size(1), hs.size(2), self.vq.size(0)) s = self.v(tc.tanh(self.ln(tc.cat([hs,vq],-1)))).squeeze(-1)# (4, batch_size, len_q) s = s - ((mask.unsqueeze(0) == 0).float() * 10000) a = tc.softmax(s, dim=0) x = a.unsqueeze(-1) * hs x = tc.sum(x, dim=0)#(batch_size, len_q, input_size) return self.drop(x) class Aggragator(nn.Module): def __init__(self, input_size, hidden_size, dropout=0.3): super(Aggragator, self).__init__() now_size = input_size self.ln = nn.Linear(2 * input_size, 2 * input_size) now_size = 2 * input_size self.rnn = Contexualizer(now_size, hidden_size, 2, dropout) now_size = self.rnn.output_size self.agg_att = AggAttention(now_size, now_size, dropout) now_size = self.agg_att.output_size self.agg_rnn = Contexualizer(now_size, hidden_size, 2, dropout) self.drop = nn.Dropout(dropout) self.output_size = self.agg_rnn.output_size def forward(self, qs, hp, mask): ''' qs: [ (batch_size, len_p, input_size), ...] hp: (batch_size, len_p, input_size) mask if the same of hp's mask ''' hs = [0 for _ in range(len(qs))] for i in range(len(qs)): q = qs[i] x = tc.cat([q, hp], dim=-1) g = tc.sigmoid(self.ln(x)) x_star = x * g h = self.rnn(x_star, mask) hs[i] = h x = self.agg_att(hs, mask) #(batch_size, len_p, output_size) h = self.agg_rnn(x, mask) #(batch_size, len_p, output_size) return self.drop(h) class Mwan_Imm(nn.Module): def __init__(self, input_size, hidden_size, num_class=3, dropout=0.2, use_allennlp=False): super(Mwan_Imm, self).__init__() now_size = input_size self.enc_s1 = Contexualizer(now_size, hidden_size, 2, dropout) self.enc_s2 = Contexualizer(now_size, hidden_size, 2, dropout) now_size = self.enc_s1.output_size self.att_c = ConcatAttention(now_size, hidden_size, dropout) self.att_b = BiLinearAttention(now_size, hidden_size, dropout) self.att_d = DotProductAttention(now_size, hidden_size, dropout) self.att_m = MinusAttention(now_size, hidden_size, dropout) now_size = self.att_c.output_size self.agg = Aggragator(now_size, hidden_size, dropout) now_size = self.enc_s1.output_size self.pred_1 = ConcatAttention_Param(now_size, hidden_size, dropout) now_size = self.agg.output_size self.pred_2 = ConcatAttention(now_size, hidden_size, dropout, input_size_2=self.pred_1.output_size) now_size = self.pred_2.output_size self.ln1 = nn.Linear(now_size, hidden_size) self.ln2 = nn.Linear(hidden_size, num_class) self.reset_parameters() def reset_parameters(self): nn.init.xavier_uniform_(self.ln1.weight.data) nn.init.xavier_uniform_(self.ln2.weight.data) self.ln1.bias.data.fill_(0) self.ln2.bias.data.fill_(0) def forward(self, s1, s2, mas_s1, mas_s2): hq = self.enc_s1(s1, mas_s1) #(batch_size, len_q, output_size) hp = self.enc_s1(s2, mas_s2) mas_s1 = mas_s1[:,:hq.size(1)] mas_s2 = mas_s2[:,:hp.size(1)] mas_q, mas_p = mas_s1, mas_s2 qc = self.att_c(hq, hp, mas_s1, mas_s2) #(batch_size, len_p, output_size) qb = self.att_b(hq, hp, mas_s1, mas_s2) qd = self.att_d(hq, hp, mas_s1, mas_s2) qm = self.att_m(hq, hp, mas_s1, mas_s2) ho = self.agg([qc,qb,qd,qm], hp, mas_s2) #(batch_size, len_p, output_size) rq = self.pred_1(hq, mas_q) #(batch_size, output_size) rp = self.pred_2(ho, rq.unsqueeze(1), mas_p)#(batch_size, 1, output_size) rp = rp.squeeze(1) #(batch_size, output_size) rp = F.relu(self.ln1(rp)) rp = self.ln2(rp) return rp class MwanModel(nn.Module): def __init__(self, num_class, EmbLayer, args_of_imm={}, ElmoLayer=None): super(MwanModel, self).__init__() self.emb = EmbLayer if ElmoLayer is not None: self.elmo = ElmoLayer self.elmo_preln = nn.Linear(3 * self.elmo.emb_size, self.elmo.emb_size) self.elmo_ln = nn.Linear(args_of_imm["input_size"] + self.elmo.emb_size, args_of_imm["input_size"]) else: self.elmo = None self.imm = Mwan_Imm(num_class=num_class, **args_of_imm) self.drop = nn.Dropout(args_of_imm["dropout"]) def forward(self, words1, words2, str_s1=None, str_s2=None, *pargs, **kwargs): ''' str_s is for elmo use , however we don't use elmo str_s: (batch_size, seq_len, word_len) ''' s1, s2 = words1, words2 mas_s1 = (s1 != 0).float() # mas: (batch_size, seq_len) mas_s2 = (s2 != 0).float() # mas: (batch_size, seq_len) mas_s1.requires_grad = False mas_s2.requires_grad = False s1_emb = self.emb(s1) s2_emb = self.emb(s2) if self.elmo is not None: s1_elmo = self.elmo(str_s1) s2_elmo = self.elmo(str_s2) s1_elmo = tc.tanh(self.elmo_preln(tc.cat(s1_elmo, dim=-1))) s2_elmo = tc.tanh(self.elmo_preln(tc.cat(s2_elmo, dim=-1))) s1_emb = tc.cat([s1_emb, s1_elmo], dim=-1) s2_emb = tc.cat([s2_emb, s2_elmo], dim=-1) s1_emb = tc.tanh(self.elmo_ln(s1_emb)) s2_emb = tc.tanh(self.elmo_ln(s2_emb)) s1_emb = self.drop(s1_emb) s2_emb = self.drop(s2_emb) y = self.imm(s1_emb, s2_emb, mas_s1, mas_s2) return { Const.OUTPUT: y, }