import unittest import numpy as np from fastNLP.core.vocabulary import Vocabulary from fastNLP.io.embed_loader import EmbedLoader class TestEmbedLoader(unittest.TestCase): def test_load_with_vocab(self): vocab = Vocabulary() glove = "test/data_for_tests/glove.6B.50d_test.txt" word2vec = "test/data_for_tests/word2vec_test.txt" vocab.add_word('the') vocab.add_word('none') g_m = EmbedLoader.load_with_vocab(glove, vocab) self.assertEqual(g_m.shape, (4, 50)) w_m = EmbedLoader.load_with_vocab(word2vec, vocab, normalize=True) self.assertEqual(w_m.shape, (4, 50)) self.assertAlmostEqual(np.linalg.norm(w_m, axis=1).sum(), 4) def test_load_without_vocab(self): words = ['the', 'of', 'in', 'a', 'to', 'and'] glove = "test/data_for_tests/glove.6B.50d_test.txt" word2vec = "test/data_for_tests/word2vec_test.txt" g_m, vocab = EmbedLoader.load_without_vocab(glove) self.assertEqual(g_m.shape, (8, 50)) for word in words: self.assertIn(word, vocab) w_m, vocab = EmbedLoader.load_without_vocab(word2vec, normalize=True) self.assertEqual(w_m.shape, (8, 50)) self.assertAlmostEqual(np.linalg.norm(w_m, axis=1).sum(), 8) for word in words: self.assertIn(word, vocab) # no unk w_m, vocab = EmbedLoader.load_without_vocab(word2vec, normalize=True, unknown=None) self.assertEqual(w_m.shape, (7, 50)) self.assertAlmostEqual(np.linalg.norm(w_m, axis=1).sum(), 7) for word in words: self.assertIn(word, vocab)