import unittest from collections import Counter from fastNLP.core.vocabulary import Vocabulary from fastNLP.core.dataset import DataSet from fastNLP.core.instance import Instance text = ["FastNLP", "works", "well", "in", "most", "cases", "and", "scales", "well", "in", "works", "well", "in", "most", "cases", "scales", "well"] counter = Counter(text) class TestAdd(unittest.TestCase): def test_add(self): vocab = Vocabulary(max_size=None, min_freq=None) for word in text: vocab.add(word) self.assertEqual(vocab.word_count, counter) def test_add_word(self): vocab = Vocabulary(max_size=None, min_freq=None) for word in text: vocab.add_word(word) self.assertEqual(vocab.word_count, counter) def test_add_word_lst(self): vocab = Vocabulary(max_size=None, min_freq=None) vocab.add_word_lst(text) self.assertEqual(vocab.word_count, counter) def test_update(self): vocab = Vocabulary(max_size=None, min_freq=None) vocab.update(text) self.assertEqual(vocab.word_count, counter) def test_from_dataset(self): start_char = 65 num_samples = 10 # 0 dim dataset = DataSet() for i in range(num_samples): ins = Instance(char=chr(start_char+i)) dataset.append(ins) vocab = Vocabulary() vocab.from_dataset(dataset, field_name='char') for i in range(num_samples): self.assertEqual(vocab.to_index(chr(start_char+i)), i+2) vocab.index_dataset(dataset, field_name='char') # 1 dim dataset = DataSet() for i in range(num_samples): ins = Instance(char=[chr(start_char+i)]*6) dataset.append(ins) vocab = Vocabulary() vocab.from_dataset(dataset, field_name='char') for i in range(num_samples): self.assertEqual(vocab.to_index(chr(start_char+i)), i+2) vocab.index_dataset(dataset, field_name='char') # 2 dim dataset = DataSet() for i in range(num_samples): ins = Instance(char=[[chr(start_char+i) for _ in range(6)] for _ in range(6)]) dataset.append(ins) vocab = Vocabulary() vocab.from_dataset(dataset, field_name='char') for i in range(num_samples): self.assertEqual(vocab.to_index(chr(start_char+i)), i+2) vocab.index_dataset(dataset, field_name='char') class TestIndexing(unittest.TestCase): def test_len(self): vocab = Vocabulary(max_size=None, min_freq=None, unknown=None, padding=None) vocab.update(text) self.assertEqual(len(vocab), len(counter)) def test_contains(self): vocab = Vocabulary(max_size=None, min_freq=None, unknown=None, padding=None) vocab.update(text) self.assertTrue(text[-1] in vocab) self.assertFalse("~!@#" in vocab) self.assertEqual(text[-1] in vocab, vocab.has_word(text[-1])) self.assertEqual("~!@#" in vocab, vocab.has_word("~!@#")) def test_index(self): vocab = Vocabulary(max_size=None, min_freq=None) vocab.update(text) res = [vocab[w] for w in set(text)] self.assertEqual(len(res), len(set(res))) res = [vocab.to_index(w) for w in set(text)] self.assertEqual(len(res), len(set(res))) def test_to_word(self): vocab = Vocabulary(max_size=None, min_freq=None) vocab.update(text) self.assertEqual(text, [vocab.to_word(idx) for idx in [vocab[w] for w in text]]) def test_iteration(self): vocab = Vocabulary() text = ["FastNLP", "works", "well", "in", "most", "cases", "and", "scales", "well", "in", "works", "well", "in", "most", "cases", "scales", "well"] vocab.update(text) text = set(text) for word in vocab: self.assertTrue(word in text) class TestOther(unittest.TestCase): def test_additional_update(self): vocab = Vocabulary(max_size=None, min_freq=None) vocab.update(text) _ = vocab["well"] self.assertEqual(vocab.rebuild, False) vocab.add("hahaha") self.assertEqual(vocab.rebuild, True) _ = vocab["hahaha"] self.assertEqual(vocab.rebuild, False) self.assertTrue("hahaha" in vocab) def test_warning(self): vocab = Vocabulary(max_size=len(set(text)), min_freq=None) vocab.update(text) self.assertEqual(vocab.rebuild, True) print(len(vocab)) self.assertEqual(vocab.rebuild, False) vocab.update(["hahahha", "hhh", "vvvv", "ass", "asss", "jfweiong", "eqgfeg", "feqfw"]) # this will print a warning self.assertEqual(vocab.rebuild, True)