| @@ -0,0 +1,22 @@ | |||
| # text_classification任务模型复现 | |||
| 这里使用fastNLP复现以下模型: | |||
| char_cnn :论文链接[Character-level Convolutional Networks for Text Classification](https://arxiv.org/pdf/1509.01626v3.pdf) | |||
| dpcnn:论文链接[Deep Pyramid Convolutional Neural Networks for TextCategorization](https://ai.tencent.com/ailab/media/publications/ACL3-Brady.pdf) | |||
| HAN:论文链接[Hierarchical Attention Networks for Document Classification](https://www.cs.cmu.edu/~diyiy/docs/naacl16.pdf) | |||
| #待补充 | |||
| awd_lstm: | |||
| lstm_self_attention(BCN?): | |||
| awd-sltm: | |||
| # 数据集及复现结果汇总 | |||
| 使用fastNLP复现的结果vs论文汇报结果(/前为fastNLP实现,后面为论文报道,-表示论文没有在该数据集上列出结果) | |||
| model name | yelp_p | sst-2|IMDB| | |||
| :---: | :---: | :---: | :---: | |||
| char_cnn | 93.80/95.12 | - |- | | |||
| dpcnn | 95.50/97.36 | - |- | | |||
| HAN |- | - |-| | |||
| BCN| - |- |-| | |||
| awd-lstm| - |- |-| | |||
| @@ -32,27 +32,27 @@ class IMDBLoader(DataSetLoader): | |||
| continue | |||
| parts = line.split('\t') | |||
| target = parts[0] | |||
| words = parts[1].split() | |||
| words = parts[1].lower().split() | |||
| dataset.append(Instance(words=words, target=target)) | |||
| if len(dataset)==0: | |||
| raise RuntimeError(f"{path} has no valid data.") | |||
| return dataset | |||
| def process(self, | |||
| paths: Union[str, Dict[str, str]], | |||
| src_vocab_opt: VocabularyOption = None, | |||
| tgt_vocab_opt: VocabularyOption = None, | |||
| src_embed_opt: EmbeddingOption = None, | |||
| char_level_op=False): | |||
| datasets = {} | |||
| info = DataInfo() | |||
| for name, path in paths.items(): | |||
| dataset = self.load(path) | |||
| datasets[name] = dataset | |||
| def wordtochar(words): | |||
| chars = [] | |||
| for word in words: | |||
| @@ -69,7 +69,7 @@ class IMDBLoader(DataSetLoader): | |||
| src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
| src_vocab.from_dataset(datasets['train'], field_name='words') | |||
| # src_vocab.from_dataset(datasets['train'], datasets["dev"], datasets["test"], field_name='words') | |||
| src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| @@ -95,6 +95,7 @@ class IMDBLoader(DataSetLoader): | |||
| return info | |||
| if __name__=="__main__": | |||
| datapath = {"train": "/remote-home/ygwang/IMDB_data/train.csv", | |||
| "test": "/remote-home/ygwang/IMDB_data/test.csv"} | |||
| @@ -106,3 +107,4 @@ if __name__=="__main__": | |||
| ave_len = len_count / len(datainfo.datasets["train"]) | |||
| print(ave_len) | |||
| @@ -32,7 +32,7 @@ class MTL16Loader(DataSetLoader): | |||
| continue | |||
| parts = line.split('\t') | |||
| target = parts[0] | |||
| words = parts[1].split() | |||
| words = parts[1].lower().split() | |||
| dataset.append(Instance(words=words, target=target)) | |||
| if len(dataset)==0: | |||
| raise RuntimeError(f"{path} has no valid data.") | |||
| @@ -72,4 +72,8 @@ class MTL16Loader(DataSetLoader): | |||
| embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
| info.embeddings['words'] = embed | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input("words") | |||
| dataset.set_target("target") | |||
| return info | |||
| @@ -0,0 +1,187 @@ | |||
| from typing import Iterable | |||
| from nltk import Tree | |||
| from fastNLP.io.base_loader import DataInfo, DataSetLoader | |||
| from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||
| from fastNLP import DataSet | |||
| from fastNLP import Instance | |||
| from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
| import csv | |||
| from typing import Union, Dict | |||
| class SSTLoader(DataSetLoader): | |||
| URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
| DATA_DIR = 'sst/' | |||
| """ | |||
| 别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader` | |||
| 读取SST数据集, DataSet包含fields:: | |||
| words: list(str) 需要分类的文本 | |||
| target: str 文本的标签 | |||
| 数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip | |||
| :param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False`` | |||
| :param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
| """ | |||
| def __init__(self, subtree=False, fine_grained=False): | |||
| self.subtree = subtree | |||
| tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral', | |||
| '3': 'positive', '4': 'very positive'} | |||
| if not fine_grained: | |||
| tag_v['0'] = tag_v['1'] | |||
| tag_v['4'] = tag_v['3'] | |||
| self.tag_v = tag_v | |||
| def _load(self, path): | |||
| """ | |||
| :param str path: 存储数据的路径 | |||
| :return: 一个 :class:`~fastNLP.DataSet` 类型的对象 | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| datas = [] | |||
| for l in f: | |||
| datas.extend([(s, self.tag_v[t]) | |||
| for s, t in self._get_one(l, self.subtree)]) | |||
| ds = DataSet() | |||
| for words, tag in datas: | |||
| ds.append(Instance(words=words, target=tag)) | |||
| return ds | |||
| @staticmethod | |||
| def _get_one(data, subtree): | |||
| tree = Tree.fromstring(data) | |||
| if subtree: | |||
| return [(t.leaves(), t.label()) for t in tree.subtrees()] | |||
| return [(tree.leaves(), tree.label())] | |||
| def process(self, | |||
| paths, | |||
| train_ds: Iterable[str] = None, | |||
| src_vocab_op: VocabularyOption = None, | |||
| tgt_vocab_op: VocabularyOption = None, | |||
| src_embed_op: EmbeddingOption = None): | |||
| input_name, target_name = 'words', 'target' | |||
| src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
| info = DataInfo(datasets=self.load(paths)) | |||
| _train_ds = [info.datasets[name] | |||
| for name in train_ds] if train_ds else info.datasets.values() | |||
| src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
| tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
| src_vocab.index_dataset( | |||
| *info.datasets.values(), | |||
| field_name=input_name, new_field_name=input_name) | |||
| tgt_vocab.index_dataset( | |||
| *info.datasets.values(), | |||
| field_name=target_name, new_field_name=target_name) | |||
| info.vocabs = { | |||
| input_name: src_vocab, | |||
| target_name: tgt_vocab | |||
| } | |||
| if src_embed_op is not None: | |||
| src_embed_op.vocab = src_vocab | |||
| init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
| info.embeddings[input_name] = init_emb | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input(input_name) | |||
| dataset.set_target(target_name) | |||
| return info | |||
| class sst2Loader(DataSetLoader): | |||
| ''' | |||
| 数据来源"SST":'https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8', | |||
| ''' | |||
| def __init__(self): | |||
| super(sst2Loader, self).__init__() | |||
| def _load(self, path: str) -> DataSet: | |||
| ds = DataSet() | |||
| all_count=0 | |||
| csv_reader = csv.reader(open(path, encoding='utf-8'),delimiter='\t') | |||
| skip_row = 0 | |||
| for idx,row in enumerate(csv_reader): | |||
| if idx<=skip_row: | |||
| continue | |||
| target = row[1] | |||
| words = row[0].split() | |||
| ds.append(Instance(words=words,target=target)) | |||
| all_count+=1 | |||
| print("all count:", all_count) | |||
| return ds | |||
| def process(self, | |||
| paths: Union[str, Dict[str, str]], | |||
| src_vocab_opt: VocabularyOption = None, | |||
| tgt_vocab_opt: VocabularyOption = None, | |||
| src_embed_opt: EmbeddingOption = None, | |||
| char_level_op=False): | |||
| paths = check_dataloader_paths(paths) | |||
| datasets = {} | |||
| info = DataInfo() | |||
| for name, path in paths.items(): | |||
| dataset = self.load(path) | |||
| datasets[name] = dataset | |||
| def wordtochar(words): | |||
| chars=[] | |||
| for word in words: | |||
| word=word.lower() | |||
| for char in word: | |||
| chars.append(char) | |||
| return chars | |||
| input_name, target_name = 'words', 'target' | |||
| info.vocabs={} | |||
| # 就分隔为char形式 | |||
| if char_level_op: | |||
| for dataset in datasets.values(): | |||
| dataset.apply_field(wordtochar, field_name="words", new_field_name='chars') | |||
| src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
| src_vocab.from_dataset(datasets['train'], field_name='words') | |||
| src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
| tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
| tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
| info.vocabs = { | |||
| "words": src_vocab, | |||
| "target": tgt_vocab | |||
| } | |||
| info.datasets = datasets | |||
| if src_embed_opt is not None: | |||
| embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
| info.embeddings['words'] = embed | |||
| return info | |||
| if __name__=="__main__": | |||
| datapath = {"train": "/remote-home/ygwang/workspace/GLUE/SST-2/train.tsv", | |||
| "dev": "/remote-home/ygwang/workspace/GLUE/SST-2/dev.tsv"} | |||
| datainfo=sst2Loader().process(datapath,char_level_op=True) | |||
| #print(datainfo.datasets["train"]) | |||
| len_count = 0 | |||
| for instance in datainfo.datasets["train"]: | |||
| len_count += len(instance["chars"]) | |||
| ave_len = len_count / len(datainfo.datasets["train"]) | |||
| print(ave_len) | |||
| @@ -1,13 +1,102 @@ | |||
| import csv | |||
| from typing import Iterable | |||
| from fastNLP import DataSet, Instance, Vocabulary | |||
| from fastNLP.core.vocabulary import VocabularyOption | |||
| from fastNLP.io.base_loader import DataInfo,DataSetLoader | |||
| from fastNLP.io.embed_loader import EmbeddingOption | |||
| from fastNLP.io.file_reader import _read_json | |||
| from nltk import Tree | |||
| from fastNLP.io.base_loader import DataInfo, DataSetLoader | |||
| from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||
| from fastNLP import DataSet | |||
| from fastNLP import Instance | |||
| from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
| import csv | |||
| from typing import Union, Dict | |||
| from reproduction.Star_transformer.datasets import EmbedLoader | |||
| from reproduction.utils import check_dataloader_paths | |||
| class SSTLoader(DataSetLoader): | |||
| URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
| DATA_DIR = 'sst/' | |||
| """ | |||
| 别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader` | |||
| 读取SST数据集, DataSet包含fields:: | |||
| words: list(str) 需要分类的文本 | |||
| target: str 文本的标签 | |||
| 数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip | |||
| :param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False`` | |||
| :param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
| """ | |||
| def __init__(self, subtree=False, fine_grained=False): | |||
| self.subtree = subtree | |||
| tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral', | |||
| '3': 'positive', '4': 'very positive'} | |||
| if not fine_grained: | |||
| tag_v['0'] = tag_v['1'] | |||
| tag_v['4'] = tag_v['3'] | |||
| self.tag_v = tag_v | |||
| def _load(self, path): | |||
| """ | |||
| :param str path: 存储数据的路径 | |||
| :return: 一个 :class:`~fastNLP.DataSet` 类型的对象 | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| datas = [] | |||
| for l in f: | |||
| datas.extend([(s, self.tag_v[t]) | |||
| for s, t in self._get_one(l, self.subtree)]) | |||
| ds = DataSet() | |||
| for words, tag in datas: | |||
| ds.append(Instance(words=words, target=tag)) | |||
| return ds | |||
| @staticmethod | |||
| def _get_one(data, subtree): | |||
| tree = Tree.fromstring(data) | |||
| if subtree: | |||
| return [(t.leaves(), t.label()) for t in tree.subtrees()] | |||
| return [(tree.leaves(), tree.label())] | |||
| def process(self, | |||
| paths, | |||
| train_ds: Iterable[str] = None, | |||
| src_vocab_op: VocabularyOption = None, | |||
| tgt_vocab_op: VocabularyOption = None, | |||
| src_embed_op: EmbeddingOption = None): | |||
| input_name, target_name = 'words', 'target' | |||
| src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
| info = DataInfo(datasets=self.load(paths)) | |||
| _train_ds = [info.datasets[name] | |||
| for name in train_ds] if train_ds else info.datasets.values() | |||
| src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
| tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
| src_vocab.index_dataset( | |||
| *info.datasets.values(), | |||
| field_name=input_name, new_field_name=input_name) | |||
| tgt_vocab.index_dataset( | |||
| *info.datasets.values(), | |||
| field_name=target_name, new_field_name=target_name) | |||
| info.vocabs = { | |||
| input_name: src_vocab, | |||
| target_name: tgt_vocab | |||
| } | |||
| if src_embed_op is not None: | |||
| src_embed_op.vocab = src_vocab | |||
| init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
| info.embeddings[input_name] = init_emb | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input(input_name) | |||
| dataset.set_target(target_name) | |||
| return info | |||
| class sst2Loader(DataSetLoader): | |||
| ''' | |||
| @@ -34,18 +34,10 @@ def clean_str(sentence, tokenizer, char_lower=False): | |||
| return words_collection | |||
| class yelpLoader(JsonLoader): | |||
| class yelpLoader(DataSetLoader): | |||
| """ | |||
| 读取Yelp数据集, DataSet包含fields: | |||
| review_id: str, 22 character unique review id | |||
| user_id: str, 22 character unique user id | |||
| business_id: str, 22 character business id | |||
| useful: int, number of useful votes received | |||
| funny: int, number of funny votes received | |||
| cool: int, number of cool votes received | |||
| date: str, date formatted YYYY-MM-DD | |||
| 读取Yelp_full/Yelp_polarity数据集, DataSet包含fields: | |||
| words: list(str), 需要分类的文本 | |||
| target: str, 文本的标签 | |||
| chars:list(str),未index的字符列表 | |||
| @@ -180,6 +172,12 @@ class yelpLoader(JsonLoader): | |||
| info.vocabs[target_name]=tgt_vocab | |||
| info.datasets['train'],info.datasets['dev']=info.datasets['train'].split(0.1, shuffle=False) | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input("words") | |||
| dataset.set_target("target") | |||
| return info | |||
| if __name__=="__main__": | |||
| @@ -196,4 +194,4 @@ if __name__=="__main__": | |||
| len_count+=len(instance["chars"]) | |||
| ave_len=len_count/len(datainfo.datasets["train"]) | |||
| print(ave_len) | |||
| print(ave_len) | |||
| @@ -0,0 +1,109 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from torch.autograd import Variable | |||
| from fastNLP.modules.utils import get_embeddings | |||
| from fastNLP.core import Const as C | |||
| def pack_sequence(tensor_seq, padding_value=0.0): | |||
| if len(tensor_seq) <= 0: | |||
| return | |||
| length = [v.size(0) for v in tensor_seq] | |||
| max_len = max(length) | |||
| size = [len(tensor_seq), max_len] | |||
| size.extend(list(tensor_seq[0].size()[1:])) | |||
| ans = torch.Tensor(*size).fill_(padding_value) | |||
| if tensor_seq[0].data.is_cuda: | |||
| ans = ans.cuda() | |||
| ans = Variable(ans) | |||
| for i, v in enumerate(tensor_seq): | |||
| ans[i, :length[i], :] = v | |||
| return ans | |||
| class HANCLS(nn.Module): | |||
| def __init__(self, init_embed, num_cls): | |||
| super(HANCLS, self).__init__() | |||
| self.embed = get_embeddings(init_embed) | |||
| self.han = HAN(input_size=300, | |||
| output_size=num_cls, | |||
| word_hidden_size=50, word_num_layers=1, word_context_size=100, | |||
| sent_hidden_size=50, sent_num_layers=1, sent_context_size=100 | |||
| ) | |||
| def forward(self, input_sents): | |||
| # input_sents [B, num_sents, seq-len] dtype long | |||
| # target | |||
| B, num_sents, seq_len = input_sents.size() | |||
| input_sents = input_sents.view(-1, seq_len) # flat | |||
| words_embed = self.embed(input_sents) # should be [B*num-sent, seqlen , word-dim] | |||
| words_embed = words_embed.view(B, num_sents, seq_len, -1) # recover # [B, num-sent, seqlen , word-dim] | |||
| out = self.han(words_embed) | |||
| return {C.OUTPUT: out} | |||
| def predict(self, input_sents): | |||
| x = self.forward(input_sents)[C.OUTPUT] | |||
| return {C.OUTPUT: torch.argmax(x, 1)} | |||
| class HAN(nn.Module): | |||
| def __init__(self, input_size, output_size, | |||
| word_hidden_size, word_num_layers, word_context_size, | |||
| sent_hidden_size, sent_num_layers, sent_context_size): | |||
| super(HAN, self).__init__() | |||
| self.word_layer = AttentionNet(input_size, | |||
| word_hidden_size, | |||
| word_num_layers, | |||
| word_context_size) | |||
| self.sent_layer = AttentionNet(2 * word_hidden_size, | |||
| sent_hidden_size, | |||
| sent_num_layers, | |||
| sent_context_size) | |||
| self.output_layer = nn.Linear(2 * sent_hidden_size, output_size) | |||
| self.softmax = nn.LogSoftmax(dim=1) | |||
| def forward(self, batch_doc): | |||
| # input is a sequence of matrix | |||
| doc_vec_list = [] | |||
| for doc in batch_doc: | |||
| sent_mat = self.word_layer(doc) # doc's dim (num_sent, seq_len, word_dim) | |||
| doc_vec_list.append(sent_mat) # sent_mat's dim (num_sent, vec_dim) | |||
| doc_vec = self.sent_layer(pack_sequence(doc_vec_list)) | |||
| output = self.softmax(self.output_layer(doc_vec)) | |||
| return output | |||
| class AttentionNet(nn.Module): | |||
| def __init__(self, input_size, gru_hidden_size, gru_num_layers, context_vec_size): | |||
| super(AttentionNet, self).__init__() | |||
| self.input_size = input_size | |||
| self.gru_hidden_size = gru_hidden_size | |||
| self.gru_num_layers = gru_num_layers | |||
| self.context_vec_size = context_vec_size | |||
| # Encoder | |||
| self.gru = nn.GRU(input_size=input_size, | |||
| hidden_size=gru_hidden_size, | |||
| num_layers=gru_num_layers, | |||
| batch_first=True, | |||
| bidirectional=True) | |||
| # Attention | |||
| self.fc = nn.Linear(2 * gru_hidden_size, context_vec_size) | |||
| self.tanh = nn.Tanh() | |||
| self.softmax = nn.Softmax(dim=1) | |||
| # context vector | |||
| self.context_vec = nn.Parameter(torch.Tensor(context_vec_size, 1)) | |||
| self.context_vec.data.uniform_(-0.1, 0.1) | |||
| def forward(self, inputs): | |||
| # GRU part | |||
| h_t, hidden = self.gru(inputs) # inputs's dim (batch_size, seq_len, word_dim) | |||
| u = self.tanh(self.fc(h_t)) | |||
| # Attention part | |||
| alpha = self.softmax(torch.matmul(u, self.context_vec)) # u's dim (batch_size, seq_len, context_vec_size) | |||
| output = torch.bmm(torch.transpose(h_t, 1, 2), alpha) # alpha's dim (batch_size, seq_len, 1) | |||
| return torch.squeeze(output, dim=2) # output's dim (batch_size, 2*hidden_size, 1) | |||
| @@ -0,0 +1,31 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from fastNLP.core.const import Const as C | |||
| from .awdlstm_module import LSTM | |||
| from fastNLP.modules import encoder | |||
| from fastNLP.modules.decoder.mlp import MLP | |||
| class AWDLSTMSentiment(nn.Module): | |||
| def __init__(self, init_embed, | |||
| num_classes, | |||
| hidden_dim=256, | |||
| num_layers=1, | |||
| nfc=128, | |||
| wdrop=0.5): | |||
| super(AWDLSTMSentiment,self).__init__() | |||
| self.embed = encoder.Embedding(init_embed) | |||
| self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True, wdrop=wdrop) | |||
| self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes]) | |||
| def forward(self, words): | |||
| x_emb = self.embed(words) | |||
| output, _ = self.lstm(x_emb) | |||
| output = self.mlp(output[:,-1,:]) | |||
| return {C.OUTPUT: output} | |||
| def predict(self, words): | |||
| output = self(words) | |||
| _, predict = output[C.OUTPUT].max(dim=1) | |||
| return {C.OUTPUT: predict} | |||
| @@ -0,0 +1,86 @@ | |||
| """ | |||
| 轻量封装的 Pytorch LSTM 模块. | |||
| 可在 forward 时传入序列的长度, 自动对padding做合适的处理. | |||
| """ | |||
| __all__ = [ | |||
| "LSTM" | |||
| ] | |||
| import torch | |||
| import torch.nn as nn | |||
| import torch.nn.utils.rnn as rnn | |||
| from fastNLP.modules.utils import initial_parameter | |||
| from torch import autograd | |||
| from .weight_drop import WeightDrop | |||
| class LSTM(nn.Module): | |||
| """ | |||
| 别名::class:`fastNLP.modules.LSTM` :class:`fastNLP.modules.encoder.lstm.LSTM` | |||
| LSTM 模块, 轻量封装的Pytorch LSTM. 在提供seq_len的情况下,将自动使用pack_padded_sequence; 同时默认将forget gate的bias初始化 | |||
| 为1; 且可以应对DataParallel中LSTM的使用问题。 | |||
| :param input_size: 输入 `x` 的特征维度 | |||
| :param hidden_size: 隐状态 `h` 的特征维度. | |||
| :param num_layers: rnn的层数. Default: 1 | |||
| :param dropout: 层间dropout概率. Default: 0 | |||
| :param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False`` | |||
| :param batch_first: 若为 ``True``, 输入和输出 ``Tensor`` 形状为 | |||
| :(batch, seq, feature). Default: ``False`` | |||
| :param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True`` | |||
| """ | |||
| def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True, | |||
| bidirectional=False, bias=True, wdrop=0.5): | |||
| super(LSTM, self).__init__() | |||
| self.batch_first = batch_first | |||
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first, | |||
| dropout=dropout, bidirectional=bidirectional) | |||
| self.lstm = WeightDrop(self.lstm, ['weight_hh_l0'], dropout=wdrop) | |||
| self.init_param() | |||
| def init_param(self): | |||
| for name, param in self.named_parameters(): | |||
| if 'bias' in name: | |||
| # based on https://github.com/pytorch/pytorch/issues/750#issuecomment-280671871 | |||
| param.data.fill_(0) | |||
| n = param.size(0) | |||
| start, end = n // 4, n // 2 | |||
| param.data[start:end].fill_(1) | |||
| else: | |||
| nn.init.xavier_uniform_(param) | |||
| def forward(self, x, seq_len=None, h0=None, c0=None): | |||
| """ | |||
| :param x: [batch, seq_len, input_size] 输入序列 | |||
| :param seq_len: [batch, ] 序列长度, 若为 ``None``, 所有输入看做一样长. Default: ``None`` | |||
| :param h0: [batch, hidden_size] 初始隐状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
| :param c0: [batch, hidden_size] 初始Cell状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
| :return (output, ht) 或 output: 若 ``get_hidden=True`` [batch, seq_len, hidden_size*num_direction] 输出序列 | |||
| 和 [batch, hidden_size*num_direction] 最后时刻隐状态. | |||
| """ | |||
| batch_size, max_len, _ = x.size() | |||
| if h0 is not None and c0 is not None: | |||
| hx = (h0, c0) | |||
| else: | |||
| hx = None | |||
| if seq_len is not None and not isinstance(x, rnn.PackedSequence): | |||
| sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True) | |||
| if self.batch_first: | |||
| x = x[sort_idx] | |||
| else: | |||
| x = x[:, sort_idx] | |||
| x = rnn.pack_padded_sequence(x, sort_lens, batch_first=self.batch_first) | |||
| output, hx = self.lstm(x, hx) # -> [N,L,C] | |||
| output, _ = rnn.pad_packed_sequence(output, batch_first=self.batch_first, total_length=max_len) | |||
| _, unsort_idx = torch.sort(sort_idx, dim=0, descending=False) | |||
| if self.batch_first: | |||
| output = output[unsort_idx] | |||
| else: | |||
| output = output[:, unsort_idx] | |||
| else: | |||
| output, hx = self.lstm(x, hx) | |||
| return output, hx | |||
| @@ -0,0 +1,30 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP.modules.encoder.lstm import LSTM | |||
| from fastNLP.modules import encoder | |||
| from fastNLP.modules.decoder.mlp import MLP | |||
| class BiLSTMSentiment(nn.Module): | |||
| def __init__(self, init_embed, | |||
| num_classes, | |||
| hidden_dim=256, | |||
| num_layers=1, | |||
| nfc=128): | |||
| super(BiLSTMSentiment,self).__init__() | |||
| self.embed = encoder.Embedding(init_embed) | |||
| self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True) | |||
| self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes]) | |||
| def forward(self, words): | |||
| x_emb = self.embed(words) | |||
| output, _ = self.lstm(x_emb) | |||
| output = self.mlp(output[:,-1,:]) | |||
| return {C.OUTPUT: output} | |||
| def predict(self, words): | |||
| output = self(words) | |||
| _, predict = output[C.OUTPUT].max(dim=1) | |||
| return {C.OUTPUT: predict} | |||
| @@ -0,0 +1,35 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP.modules.encoder.lstm import LSTM | |||
| from fastNLP.modules import encoder | |||
| from fastNLP.modules.aggregator.attention import SelfAttention | |||
| from fastNLP.modules.decoder.mlp import MLP | |||
| class BiLSTM_SELF_ATTENTION(nn.Module): | |||
| def __init__(self, init_embed, | |||
| num_classes, | |||
| hidden_dim=256, | |||
| num_layers=1, | |||
| attention_unit=256, | |||
| attention_hops=1, | |||
| nfc=128): | |||
| super(BiLSTM_SELF_ATTENTION,self).__init__() | |||
| self.embed = encoder.Embedding(init_embed) | |||
| self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True) | |||
| self.attention = SelfAttention(input_size=hidden_dim * 2 , attention_unit=attention_unit, attention_hops=attention_hops) | |||
| self.mlp = MLP(size_layer=[hidden_dim* 2*attention_hops, nfc, num_classes]) | |||
| def forward(self, words): | |||
| x_emb = self.embed(words) | |||
| output, _ = self.lstm(x_emb) | |||
| after_attention, penalty = self.attention(output,words) | |||
| after_attention =after_attention.view(after_attention.size(0),-1) | |||
| output = self.mlp(after_attention) | |||
| return {C.OUTPUT: output} | |||
| def predict(self, words): | |||
| output = self(words) | |||
| _, predict = output[C.OUTPUT].max(dim=1) | |||
| return {C.OUTPUT: predict} | |||
| @@ -0,0 +1,99 @@ | |||
| import torch | |||
| from torch.nn import Parameter | |||
| from functools import wraps | |||
| class WeightDrop(torch.nn.Module): | |||
| def __init__(self, module, weights, dropout=0, variational=False): | |||
| super(WeightDrop, self).__init__() | |||
| self.module = module | |||
| self.weights = weights | |||
| self.dropout = dropout | |||
| self.variational = variational | |||
| self._setup() | |||
| def widget_demagnetizer_y2k_edition(*args, **kwargs): | |||
| # We need to replace flatten_parameters with a nothing function | |||
| # It must be a function rather than a lambda as otherwise pickling explodes | |||
| # We can't write boring code though, so ... WIDGET DEMAGNETIZER Y2K EDITION! | |||
| # (╯°□°)╯︵ ┻━┻ | |||
| return | |||
| def _setup(self): | |||
| # Terrible temporary solution to an issue regarding compacting weights re: CUDNN RNN | |||
| if issubclass(type(self.module), torch.nn.RNNBase): | |||
| self.module.flatten_parameters = self.widget_demagnetizer_y2k_edition | |||
| for name_w in self.weights: | |||
| print('Applying weight drop of {} to {}'.format(self.dropout, name_w)) | |||
| w = getattr(self.module, name_w) | |||
| del self.module._parameters[name_w] | |||
| self.module.register_parameter(name_w + '_raw', Parameter(w.data)) | |||
| def _setweights(self): | |||
| for name_w in self.weights: | |||
| raw_w = getattr(self.module, name_w + '_raw') | |||
| w = None | |||
| if self.variational: | |||
| mask = torch.autograd.Variable(torch.ones(raw_w.size(0), 1)) | |||
| if raw_w.is_cuda: mask = mask.cuda() | |||
| mask = torch.nn.functional.dropout(mask, p=self.dropout, training=True) | |||
| w = mask.expand_as(raw_w) * raw_w | |||
| else: | |||
| w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training) | |||
| setattr(self.module, name_w, w) | |||
| def forward(self, *args): | |||
| self._setweights() | |||
| return self.module.forward(*args) | |||
| if __name__ == '__main__': | |||
| import torch | |||
| from weight_drop import WeightDrop | |||
| # Input is (seq, batch, input) | |||
| x = torch.autograd.Variable(torch.randn(2, 1, 10)).cuda() | |||
| h0 = None | |||
| ### | |||
| print('Testing WeightDrop') | |||
| print('=-=-=-=-=-=-=-=-=-=') | |||
| ### | |||
| print('Testing WeightDrop with Linear') | |||
| lin = WeightDrop(torch.nn.Linear(10, 10), ['weight'], dropout=0.9) | |||
| lin.cuda() | |||
| run1 = [x.sum() for x in lin(x).data] | |||
| run2 = [x.sum() for x in lin(x).data] | |||
| print('All items should be different') | |||
| print('Run 1:', run1) | |||
| print('Run 2:', run2) | |||
| assert run1[0] != run2[0] | |||
| assert run1[1] != run2[1] | |||
| print('---') | |||
| ### | |||
| print('Testing WeightDrop with LSTM') | |||
| wdrnn = WeightDrop(torch.nn.LSTM(10, 10), ['weight_hh_l0'], dropout=0.9) | |||
| wdrnn.cuda() | |||
| run1 = [x.sum() for x in wdrnn(x, h0)[0].data] | |||
| run2 = [x.sum() for x in wdrnn(x, h0)[0].data] | |||
| print('First timesteps should be equal, all others should differ') | |||
| print('Run 1:', run1) | |||
| print('Run 2:', run2) | |||
| # First time step, not influenced by hidden to hidden weights, should be equal | |||
| assert run1[0] == run2[0] | |||
| # Second step should not | |||
| assert run1[1] != run2[1] | |||
| print('---') | |||
| @@ -0,0 +1,109 @@ | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| import sys | |||
| sys.path.append('../../') | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP.core import LRScheduler | |||
| import torch.nn as nn | |||
| from fastNLP.io.dataset_loader import SSTLoader | |||
| from reproduction.text_classification.data.yelpLoader import yelpLoader | |||
| from reproduction.text_classification.model.HAN import HANCLS | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding, CNNCharEmbedding, StackEmbedding | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP.core.trainer import Trainer | |||
| from torch.optim import SGD | |||
| import torch.cuda | |||
| from torch.optim.lr_scheduler import CosineAnnealingLR | |||
| ##hyper | |||
| class Config(): | |||
| model_dir_or_name = "en-base-uncased" | |||
| embedding_grad = False, | |||
| train_epoch = 30 | |||
| batch_size = 100 | |||
| num_classes = 5 | |||
| task = "yelp" | |||
| #datadir = '/remote-home/lyli/fastNLP/yelp_polarity/' | |||
| datadir = '/remote-home/ygwang/yelp_polarity/' | |||
| datafile = {"train": "train.csv", "test": "test.csv"} | |||
| lr = 1e-3 | |||
| def __init__(self): | |||
| self.datapath = {k: os.path.join(self.datadir, v) | |||
| for k, v in self.datafile.items()} | |||
| ops = Config() | |||
| ##1.task相关信息:利用dataloader载入dataInfo | |||
| datainfo = yelpLoader(fine_grained=True).process(paths=ops.datapath, train_ds=['train']) | |||
| print(len(datainfo.datasets['train'])) | |||
| print(len(datainfo.datasets['test'])) | |||
| # post process | |||
| def make_sents(words): | |||
| sents = [words] | |||
| return sents | |||
| for dataset in datainfo.datasets.values(): | |||
| dataset.apply_field(make_sents, field_name='words', new_field_name='input_sents') | |||
| datainfo = datainfo | |||
| datainfo.datasets['train'].set_input('input_sents') | |||
| datainfo.datasets['test'].set_input('input_sents') | |||
| datainfo.datasets['train'].set_target('target') | |||
| datainfo.datasets['test'].set_target('target') | |||
| ## 2.或直接复用fastNLP的模型 | |||
| vocab = datainfo.vocabs['words'] | |||
| # embedding = StackEmbedding([StaticEmbedding(vocab), CNNCharEmbedding(vocab, 100)]) | |||
| embedding = StaticEmbedding(vocab) | |||
| print(len(vocab)) | |||
| print(len(datainfo.vocabs['target'])) | |||
| # model = DPCNN(init_embed=embedding, num_cls=ops.num_classes) | |||
| model = HANCLS(init_embed=embedding, num_cls=ops.num_classes) | |||
| ## 3. 声明loss,metric,optimizer | |||
| loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET) | |||
| metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET) | |||
| optimizer = SGD([param for param in model.parameters() if param.requires_grad == True], | |||
| lr=ops.lr, momentum=0.9, weight_decay=0) | |||
| callbacks = [] | |||
| callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5))) | |||
| device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |||
| print(device) | |||
| for ds in datainfo.datasets.values(): | |||
| ds.apply_field(len, C.INPUT, C.INPUT_LEN) | |||
| ds.set_input(C.INPUT, C.INPUT_LEN) | |||
| ds.set_target(C.TARGET) | |||
| ## 4.定义train方法 | |||
| def train(model, datainfo, loss, metrics, optimizer, num_epochs=ops.train_epoch): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=[metrics], dev_data=datainfo.datasets['test'], device=device, | |||
| check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks, | |||
| n_epochs=num_epochs) | |||
| print(trainer.train()) | |||
| if __name__ == "__main__": | |||
| train(model, datainfo, loss, metric, optimizer) | |||
| @@ -0,0 +1,102 @@ | |||
| # 这个模型需要在pytorch=0.4下运行,weight_drop不支持1.0 | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| import torch.nn as nn | |||
| from data.SSTLoader import SSTLoader | |||
| from data.IMDBLoader import IMDBLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
| from model.awd_lstm import AWDLSTMSentiment | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP import Trainer, Tester | |||
| from torch.optim import Adam | |||
| from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
| import argparse | |||
| class Config(): | |||
| train_epoch= 10 | |||
| lr=0.001 | |||
| num_classes=2 | |||
| hidden_dim=256 | |||
| num_layers=1 | |||
| nfc=128 | |||
| wdrop=0.5 | |||
| task_name = "IMDB" | |||
| datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
| load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
| save_model_path="./result_IMDB_test/" | |||
| opt=Config | |||
| # load data | |||
| dataloaders = { | |||
| "IMDB":IMDBLoader(), | |||
| "YELP":yelpLoader(), | |||
| "SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
| "SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
| } | |||
| if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
| raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
| dataloader = dataloaders[opt.task_name] | |||
| datainfo=dataloader.process(opt.datapath) | |||
| # print(datainfo.datasets["train"]) | |||
| # print(datainfo) | |||
| # define model | |||
| vocab=datainfo.vocabs['words'] | |||
| embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
| model=AWDLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc, wdrop=opt.wdrop) | |||
| # define loss_function and metrics | |||
| loss=CrossEntropyLoss() | |||
| metrics=AccuracyMetric() | |||
| optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
| def train(datainfo, model, optimizer, loss, metrics, opt): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
| n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
| trainer.train() | |||
| def test(datainfo, metrics, opt): | |||
| # load model | |||
| model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
| print("model loaded!") | |||
| # Tester | |||
| tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
| acc = tester.test() | |||
| print("acc=",acc) | |||
| parser = argparse.ArgumentParser() | |||
| parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
| args = parser.parse_args() | |||
| if args.mode == 'train': | |||
| train(datainfo, model, optimizer, loss, metrics, opt) | |||
| elif args.mode == 'test': | |||
| test(datainfo, metrics, opt) | |||
| else: | |||
| print('no mode specified for model!') | |||
| parser.print_help() | |||
| @@ -7,7 +7,6 @@ import sys | |||
| sys.path.append('../..') | |||
| from fastNLP.core.const import Const as C | |||
| import torch.nn as nn | |||
| from fastNLP.io.dataset_loader import SSTLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from data.sstLoader import sst2Loader | |||
| from data.IMDBLoader import IMDBLoader | |||
| @@ -107,9 +106,9 @@ ops=Config | |||
| ##1.task相关信息:利用dataloader载入dataInfo | |||
| dataloader=sst2Loader() | |||
| dataloader=IMDBLoader() | |||
| #dataloader=yelpLoader(fine_grained=True) | |||
| #dataloader=sst2Loader() | |||
| #dataloader=IMDBLoader() | |||
| dataloader=yelpLoader(fine_grained=True) | |||
| datainfo=dataloader.process(ops.datapath,char_level_op=True) | |||
| char_vocab=ops.char_cnn_config["alphabet"]["en"]["lower"]["alphabet"] | |||
| ops.number_of_characters=len(char_vocab) | |||
| @@ -0,0 +1,99 @@ | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| import torch.nn as nn | |||
| from data.SSTLoader import SSTLoader | |||
| from data.IMDBLoader import IMDBLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
| from model.lstm import BiLSTMSentiment | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP import Trainer, Tester | |||
| from torch.optim import Adam | |||
| from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
| import argparse | |||
| class Config(): | |||
| train_epoch= 10 | |||
| lr=0.001 | |||
| num_classes=2 | |||
| hidden_dim=256 | |||
| num_layers=1 | |||
| nfc=128 | |||
| task_name = "IMDB" | |||
| datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
| load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
| save_model_path="./result_IMDB_test/" | |||
| opt=Config | |||
| # load data | |||
| dataloaders = { | |||
| "IMDB":IMDBLoader(), | |||
| "YELP":yelpLoader(), | |||
| "SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
| "SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
| } | |||
| if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
| raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
| dataloader = dataloaders[opt.task_name] | |||
| datainfo=dataloader.process(opt.datapath) | |||
| # print(datainfo.datasets["train"]) | |||
| # print(datainfo) | |||
| # define model | |||
| vocab=datainfo.vocabs['words'] | |||
| embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
| model=BiLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc) | |||
| # define loss_function and metrics | |||
| loss=CrossEntropyLoss() | |||
| metrics=AccuracyMetric() | |||
| optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
| def train(datainfo, model, optimizer, loss, metrics, opt): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
| n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
| trainer.train() | |||
| def test(datainfo, metrics, opt): | |||
| # load model | |||
| model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
| print("model loaded!") | |||
| # Tester | |||
| tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
| acc = tester.test() | |||
| print("acc=",acc) | |||
| parser = argparse.ArgumentParser() | |||
| parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
| args = parser.parse_args() | |||
| if args.mode == 'train': | |||
| train(datainfo, model, optimizer, loss, metrics, opt) | |||
| elif args.mode == 'test': | |||
| test(datainfo, metrics, opt) | |||
| else: | |||
| print('no mode specified for model!') | |||
| parser.print_help() | |||
| @@ -0,0 +1,101 @@ | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| import torch.nn as nn | |||
| from data.SSTLoader import SSTLoader | |||
| from data.IMDBLoader import IMDBLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
| from model.lstm_self_attention import BiLSTM_SELF_ATTENTION | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP import Trainer, Tester | |||
| from torch.optim import Adam | |||
| from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
| import argparse | |||
| class Config(): | |||
| train_epoch= 10 | |||
| lr=0.001 | |||
| num_classes=2 | |||
| hidden_dim=256 | |||
| num_layers=1 | |||
| attention_unit=256 | |||
| attention_hops=1 | |||
| nfc=128 | |||
| task_name = "IMDB" | |||
| datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
| load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
| save_model_path="./result_IMDB_test/" | |||
| opt=Config | |||
| # load data | |||
| dataloaders = { | |||
| "IMDB":IMDBLoader(), | |||
| "YELP":yelpLoader(), | |||
| "SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
| "SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
| } | |||
| if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
| raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
| dataloader = dataloaders[opt.task_name] | |||
| datainfo=dataloader.process(opt.datapath) | |||
| # print(datainfo.datasets["train"]) | |||
| # print(datainfo) | |||
| # define model | |||
| vocab=datainfo.vocabs['words'] | |||
| embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
| model=BiLSTM_SELF_ATTENTION(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, attention_unit=opt.attention_unit, attention_hops=opt.attention_hops, nfc=opt.nfc) | |||
| # define loss_function and metrics | |||
| loss=CrossEntropyLoss() | |||
| metrics=AccuracyMetric() | |||
| optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
| def train(datainfo, model, optimizer, loss, metrics, opt): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
| n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
| trainer.train() | |||
| def test(datainfo, metrics, opt): | |||
| # load model | |||
| model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
| print("model loaded!") | |||
| # Tester | |||
| tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
| acc = tester.test() | |||
| print("acc=",acc) | |||
| parser = argparse.ArgumentParser() | |||
| parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
| args = parser.parse_args() | |||
| if args.mode == 'train': | |||
| train(datainfo, model, optimizer, loss, metrics, opt) | |||
| elif args.mode == 'test': | |||
| test(datainfo, metrics, opt) | |||
| else: | |||
| print('no mode specified for model!') | |||
| parser.print_help() | |||