| @@ -10,6 +10,37 @@ import shutil | |||
| import hashlib | |||
| PRETRAINED_BERT_MODEL_DIR = { | |||
| 'en': 'bert-base-cased-f89bfe08.zip', | |||
| 'en-base-uncased': 'bert-base-uncased-3413b23c.zip', | |||
| 'en-base-cased': 'bert-base-cased-f89bfe08.zip', | |||
| 'en-large-uncased': 'bert-large-uncased-20939f45.zip', | |||
| 'en-large-cased': 'bert-large-cased-e0cf90fc.zip', | |||
| 'cn': 'bert-base-chinese-29d0a84a.zip', | |||
| 'cn-base': 'bert-base-chinese-29d0a84a.zip', | |||
| 'multilingual': 'bert-base-multilingual-cased-1bd364ee.zip', | |||
| 'multilingual-base-uncased': 'bert-base-multilingual-uncased-f8730fe4.zip', | |||
| 'multilingual-base-cased': 'bert-base-multilingual-cased-1bd364ee.zip', | |||
| } | |||
| PRETRAINED_ELMO_MODEL_DIR = { | |||
| 'en': 'elmo_en-d39843fe.tar.gz', | |||
| 'cn': 'elmo_cn-5e9b34e2.tar.gz' | |||
| } | |||
| PRETRAIN_STATIC_FILES = { | |||
| 'en': 'glove.840B.300d-cc1ad5e1.tar.gz', | |||
| 'en-glove-840b-300': 'glove.840B.300d-cc1ad5e1.tar.gz', | |||
| 'en-glove-6b-50': "glove.6B.50d-a6028c70.tar.gz", | |||
| 'en-word2vec-300': "GoogleNews-vectors-negative300-be166d9d.tar.gz", | |||
| 'en-fasttext': "cc.en.300.vec-d53187b2.gz", | |||
| 'cn': "tencent_cn-dab24577.tar.gz", | |||
| 'cn-fasttext': "cc.zh.300.vec-d68a9bcf.gz", | |||
| } | |||
| def cached_path(url_or_filename: str, cache_dir: Path=None) -> Path: | |||
| """ | |||
| 给定一个url或者文件名(可以是具体的文件名,也可以是文件),先在cache_dir下寻找该文件是否存在,如果不存在则去下载, 并 | |||
| @@ -26,6 +26,7 @@ from ...core.dataset import DataSet | |||
| from ...core.batch import DataSetIter | |||
| from ...core.sampler import SequentialSampler | |||
| from ...core.utils import _move_model_to_device, _get_model_device | |||
| from ...io.file_utils import PRETRAINED_BERT_MODEL_DIR, PRETRAINED_ELMO_MODEL_DIR, PRETRAIN_STATIC_FILES | |||
| class Embedding(nn.Module): | |||
| @@ -187,15 +188,6 @@ class StaticEmbedding(TokenEmbedding): | |||
| super(StaticEmbedding, self).__init__(vocab) | |||
| # 优先定义需要下载的static embedding有哪些。这里估计需要自己搞一个server, | |||
| PRETRAIN_STATIC_FILES = { | |||
| 'en': 'glove.840B.300d-cc1ad5e1.tar.gz', | |||
| 'en-glove-840b-300': 'glove.840B.300d-cc1ad5e1.tar.gz', | |||
| 'en-glove-6b-50': "glove.6B.50d-a6028c70.tar.gz", | |||
| 'en-word2vec-300': "GoogleNews-vectors-negative300-be166d9d.tar.gz", | |||
| 'en-fasttext': "cc.en.300.vec-d53187b2.gz", | |||
| 'cn': "tencent_cn-dab24577.tar.gz", | |||
| 'cn-fasttext': "cc.zh.300.vec-d68a9bcf.gz", | |||
| } | |||
| # 得到cache_path | |||
| if model_dir_or_name.lower() in PRETRAIN_STATIC_FILES: | |||
| @@ -231,7 +223,7 @@ class StaticEmbedding(TokenEmbedding): | |||
| :return: | |||
| """ | |||
| requires_grads = set([param.requires_grad for name, param in self.named_parameters() | |||
| if 'words_to_words' not in name]) | |||
| if 'words_to_words' not in name]) | |||
| if len(requires_grads) == 1: | |||
| return requires_grads.pop() | |||
| else: | |||
| @@ -244,8 +236,8 @@ class StaticEmbedding(TokenEmbedding): | |||
| continue | |||
| param.requires_grad = value | |||
| def _load_with_vocab(self, embed_filepath, vocab, dtype=np.float32, padding='<pad>', unknown='<unk>', normalize=True, | |||
| error='ignore', init_method=None): | |||
| def _load_with_vocab(self, embed_filepath, vocab, dtype=np.float32, padding='<pad>', unknown='<unk>', | |||
| normalize=True, error='ignore', init_method=None): | |||
| """ | |||
| 从embed_filepath这个预训练的词向量中抽取出vocab这个词表的词的embedding。EmbedLoader将自动判断embed_filepath是 | |||
| word2vec(第一行只有两个元素)还是glove格式的数据。 | |||
| @@ -329,11 +321,6 @@ class ContextualEmbedding(TokenEmbedding): | |||
| """ | |||
| 由于动态embedding生成比较耗时,所以可以把每句话embedding缓存下来,这样就不需要每次都运行生成过程。 | |||
| Example:: | |||
| >>> | |||
| :param datasets: DataSet对象 | |||
| :param batch_size: int, 生成cache的sentence表示时使用的batch的大小 | |||
| :param device: 参考 :class::fastNLP.Trainer 的device | |||
| @@ -363,7 +350,7 @@ class ContextualEmbedding(TokenEmbedding): | |||
| seq_len = words.ne(pad_index).sum(dim=-1) | |||
| max_len = words.size(1) | |||
| # 因为有些情况可能包含CLS, SEP, 从后面往前计算比较安全。 | |||
| seq_len_from_behind =(max_len - seq_len).tolist() | |||
| seq_len_from_behind = (max_len - seq_len).tolist() | |||
| word_embeds = self(words).detach().cpu().numpy() | |||
| for b in range(words.size(0)): | |||
| length = seq_len_from_behind[b] | |||
| @@ -446,9 +433,6 @@ class ElmoEmbedding(ContextualEmbedding): | |||
| self.layers = layers | |||
| # 根据model_dir_or_name检查是否存在并下载 | |||
| PRETRAINED_ELMO_MODEL_DIR = {'en': 'elmo_en-d39843fe.tar.gz', | |||
| 'cn': 'elmo_cn-5e9b34e2.tar.gz'} | |||
| if model_dir_or_name.lower() in PRETRAINED_ELMO_MODEL_DIR: | |||
| PRETRAIN_URL = _get_base_url('elmo') | |||
| model_name = PRETRAINED_ELMO_MODEL_DIR[model_dir_or_name] | |||
| @@ -532,21 +516,8 @@ class BertEmbedding(ContextualEmbedding): | |||
| def __init__(self, vocab: Vocabulary, model_dir_or_name: str='en-base-uncased', layers: str='-1', | |||
| pool_method: str='first', include_cls_sep: bool=False, requires_grad: bool=False): | |||
| super(BertEmbedding, self).__init__(vocab) | |||
| # 根据model_dir_or_name检查是否存在并下载 | |||
| PRETRAINED_BERT_MODEL_DIR = {'en': 'bert-base-cased-f89bfe08.zip', | |||
| 'en-base-uncased': 'bert-base-uncased-3413b23c.zip', | |||
| 'en-base-cased': 'bert-base-cased-f89bfe08.zip', | |||
| 'en-large-uncased': 'bert-large-uncased-20939f45.zip', | |||
| 'en-large-cased': 'bert-large-cased-e0cf90fc.zip', | |||
| 'cn': 'bert-base-chinese-29d0a84a.zip', | |||
| 'cn-base': 'bert-base-chinese-29d0a84a.zip', | |||
| 'multilingual': 'bert-base-multilingual-cased-1bd364ee.zip', | |||
| 'multilingual-base-uncased': 'bert-base-multilingual-uncased-f8730fe4.zip', | |||
| 'multilingual-base-cased': 'bert-base-multilingual-cased-1bd364ee.zip', | |||
| } | |||
| # 根据model_dir_or_name检查是否存在并下载 | |||
| if model_dir_or_name.lower() in PRETRAINED_BERT_MODEL_DIR: | |||
| PRETRAIN_URL = _get_base_url('bert') | |||
| model_name = PRETRAINED_BERT_MODEL_DIR[model_dir_or_name] | |||
| @@ -6,31 +6,58 @@ from typing import Union, Dict | |||
| from fastNLP.core.const import Const | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| from fastNLP.core.dataset import DataSet | |||
| from fastNLP.io.base_loader import DataInfo | |||
| from fastNLP.io.dataset_loader import JsonLoader | |||
| from fastNLP.io.file_utils import _get_base_url, cached_path | |||
| from fastNLP.io.dataset_loader import JsonLoader, DataSetLoader | |||
| from fastNLP.io.file_utils import _get_base_url, cached_path, PRETRAINED_BERT_MODEL_DIR | |||
| from fastNLP.modules.encoder._bert import BertTokenizer | |||
| class MatchingLoader(JsonLoader): | |||
| class MatchingLoader(DataSetLoader): | |||
| """ | |||
| 别名::class:`fastNLP.io.MatchingLoader` :class:`fastNLP.io.dataset_loader.MatchingLoader` | |||
| 读取Matching任务的数据集 | |||
| """ | |||
| def __init__(self, fields=None, paths: dict=None): | |||
| super(MatchingLoader, self).__init__(fields=fields) | |||
| def __init__(self, paths: dict=None): | |||
| """ | |||
| :param dict paths: key是数据集名称(如train、dev、test),value是对应的文件名 | |||
| """ | |||
| self.paths = paths | |||
| def _load(self, path): | |||
| return super(MatchingLoader, self)._load(path) | |||
| def process(self, paths: Union[str, Dict[str, str]], dataset_name=None, | |||
| to_lower=False, char_information=False, seq_len_type: str=None, | |||
| bert_tokenizer: str=None, get_index=True, set_input: Union[list, str, bool]=True, | |||
| """ | |||
| :param str path: 待读取数据集的路径名 | |||
| :return: fastNLP.DataSet ds: 返回一个DataSet对象,里面必须包含3个field:其中两个分别为两个句子 | |||
| 的原始字符串文本,第三个为标签 | |||
| """ | |||
| raise NotImplementedError | |||
| def process(self, paths: Union[str, Dict[str, str]], dataset_name: str=None, | |||
| to_lower=False, seq_len_type: str=None, bert_tokenizer: str=None, | |||
| get_index=True, set_input: Union[list, str, bool]=True, | |||
| set_target: Union[list, str, bool] = True, concat: Union[str, list, bool]=None, ) -> DataInfo: | |||
| """ | |||
| :param paths: str或者Dict[str, str]。如果是str,则为数据集所在的文件夹或者是全路径文件名:如果是文件夹, | |||
| 则会从self.paths里面找对应的数据集名称与文件名。如果是Dict,则为数据集名称(如train、dev、test)和 | |||
| 对应的全路径文件名。 | |||
| :param str dataset_name: 如果在paths里传入的是一个数据集的全路径文件名,那么可以用dataset_name来定义 | |||
| 这个数据集的名字,如果不定义则默认为train。 | |||
| :param bool to_lower: 是否将文本自动转为小写。默认值为False。 | |||
| :param str seq_len_type: 提供的seq_len类型,支持 ``seq_len`` :提供一个数字作为句子长度; ``mask`` : | |||
| 提供一个0/1的mask矩阵作为句子长度; ``bert`` :提供segment_type_id(第一个句子为0,第二个句子为1)和 | |||
| attention mask矩阵(0/1的mask矩阵)。默认值为None,即不提供seq_len | |||
| :param str bert_tokenizer: bert tokenizer所使用的词表所在的文件夹路径 | |||
| :param bool get_index: 是否需要根据词表将文本转为index | |||
| :param set_input: 如果为True,则会自动将相关的field(名字里含有Const.INPUT的)设置为input,如果为False | |||
| 则不会将任何field设置为input。如果传入str或者List[str],则会根据传入的内容将相对应的field设置为input, | |||
| 于此同时其他field不会被设置为input。默认值为True。 | |||
| :param set_target: set_target将控制哪些field可以被设置为target,用法与set_input一致。默认值为True。 | |||
| :param concat: 是否需要将两个句子拼接起来。如果为False则不会拼接。如果为True则会在两个句子之间插入一个<sep>。 | |||
| 如果传入一个长度为4的list,则分别表示插在第一句开始前、第一句结束后、第二句开始前、第二句结束后的标识符。如果 | |||
| 传入字符串 ``bert`` ,则会采用bert的拼接方式,等价于['[CLS]', '[SEP]', '', '[SEP]']. | |||
| :return: | |||
| """ | |||
| if isinstance(set_input, str): | |||
| set_input = [set_input] | |||
| if isinstance(set_target, str): | |||
| @@ -69,19 +96,6 @@ class MatchingLoader(JsonLoader): | |||
| is_input=auto_set_input) | |||
| if bert_tokenizer is not None: | |||
| PRETRAINED_BERT_MODEL_DIR = {'en': 'bert-base-cased-f89bfe08.zip', | |||
| 'en-base-uncased': 'bert-base-uncased-3413b23c.zip', | |||
| 'en-base-cased': 'bert-base-cased-f89bfe08.zip', | |||
| 'en-large-uncased': 'bert-large-uncased-20939f45.zip', | |||
| 'en-large-cased': 'bert-large-cased-e0cf90fc.zip', | |||
| 'cn': 'bert-base-chinese-29d0a84a.zip', | |||
| 'cn-base': 'bert-base-chinese-29d0a84a.zip', | |||
| 'multilingual': 'bert-base-multilingual-cased-1bd364ee.zip', | |||
| 'multilingual-base-uncased': 'bert-base-multilingual-uncased-f8730fe4.zip', | |||
| 'multilingual-base-cased': 'bert-base-multilingual-cased-1bd364ee.zip', | |||
| } | |||
| if bert_tokenizer.lower() in PRETRAINED_BERT_MODEL_DIR: | |||
| PRETRAIN_URL = _get_base_url('bert') | |||
| model_name = PRETRAINED_BERT_MODEL_DIR[bert_tokenizer] | |||
| @@ -128,14 +142,14 @@ class MatchingLoader(JsonLoader): | |||
| for fields in data_set.get_field_names(): | |||
| if Const.INPUT in fields: | |||
| data_set.apply(lambda x: len(x[fields]), | |||
| new_field_name=fields.replace(Const.INPUT, Const.TARGET), | |||
| new_field_name=fields.replace(Const.INPUT, Const.INPUT_LEN), | |||
| is_input=auto_set_input) | |||
| elif seq_len_type == 'mask': | |||
| for data_name, data_set in data_info.datasets.items(): | |||
| for fields in data_set.get_field_names(): | |||
| if Const.INPUT in fields: | |||
| data_set.apply(lambda x: [1] * len(x[fields]), | |||
| new_field_name=fields.replace(Const.INPUT, Const.TARGET), | |||
| new_field_name=fields.replace(Const.INPUT, Const.INPUT_LEN), | |||
| is_input=auto_set_input) | |||
| elif seq_len_type == 'bert': | |||
| for data_name, data_set in data_info.datasets.items(): | |||
| @@ -152,11 +166,18 @@ class MatchingLoader(JsonLoader): | |||
| if bert_tokenizer is not None: | |||
| words_vocab = Vocabulary(padding='[PAD]', unknown='[UNK]') | |||
| with open(os.path.join(model_dir, 'vocab.txt'), 'r') as f: | |||
| lines = f.readlines() | |||
| lines = [line.strip() for line in lines] | |||
| words_vocab.add_word_lst(lines) | |||
| words_vocab.build_vocab() | |||
| else: | |||
| words_vocab = Vocabulary() | |||
| words_vocab = words_vocab.from_dataset(*data_set_list, | |||
| field_name=[n for n in data_set_list[0].get_field_names() | |||
| if (Const.INPUT in n)]) | |||
| words_vocab = words_vocab.from_dataset(*[d for n, d in data_info.datasets.items() if 'train' in n], | |||
| field_name=[n for n in data_set_list[0].get_field_names() | |||
| if (Const.INPUT in n)], | |||
| no_create_entry_dataset=[d for n, d in data_info.datasets.items() | |||
| if 'train' not in n]) | |||
| target_vocab = Vocabulary(padding=None, unknown=None) | |||
| target_vocab = target_vocab.from_dataset(*data_set_list, field_name=Const.TARGET) | |||
| data_info.vocabs = {Const.INPUT: words_vocab, Const.TARGET: target_vocab} | |||
| @@ -173,14 +194,14 @@ class MatchingLoader(JsonLoader): | |||
| for data_name, data_set in data_info.datasets.items(): | |||
| if isinstance(set_input, list): | |||
| data_set.set_input(set_input) | |||
| data_set.set_input(*set_input) | |||
| if isinstance(set_target, list): | |||
| data_set.set_target(set_target) | |||
| data_set.set_target(*set_target) | |||
| return data_info | |||
| class SNLILoader(MatchingLoader): | |||
| class SNLILoader(MatchingLoader, JsonLoader): | |||
| """ | |||
| 别名::class:`fastNLP.io.SNLILoader` :class:`fastNLP.io.dataset_loader.SNLILoader` | |||
| @@ -203,10 +224,13 @@ class SNLILoader(MatchingLoader): | |||
| 'train': 'snli_1.0_train.jsonl', | |||
| 'dev': 'snli_1.0_dev.jsonl', | |||
| 'test': 'snli_1.0_test.jsonl'} | |||
| super(SNLILoader, self).__init__(fields=fields, paths=paths) | |||
| # super(SNLILoader, self).__init__(fields=fields, paths=paths) | |||
| MatchingLoader.__init__(self, paths=paths) | |||
| JsonLoader.__init__(self, fields=fields) | |||
| def _load(self, path): | |||
| ds = super(SNLILoader, self)._load(path) | |||
| # ds = super(SNLILoader, self)._load(path) | |||
| ds = JsonLoader._load(self, path) | |||
| def parse_tree(x): | |||
| t = Tree.fromstring(x) | |||
| @@ -0,0 +1,65 @@ | |||
| import argparse | |||
| import torch | |||
| from fastNLP.core import Trainer, Tester, Adam, AccuracyMetric, Const | |||
| from fastNLP.modules.encoder.embedding import ElmoEmbedding, StaticEmbedding | |||
| from reproduction.matching.data.MatchingDataLoader import SNLILoader | |||
| from reproduction.matching.model.esim import ESIMModel | |||
| argument = argparse.ArgumentParser() | |||
| argument.add_argument('--embedding', choices=['glove', 'elmo'], default='glove') | |||
| argument.add_argument('--batch-size-per-gpu', type=int, default=128) | |||
| argument.add_argument('--n-epochs', type=int, default=100) | |||
| argument.add_argument('--lr', type=float, default=1e-4) | |||
| argument.add_argument('--seq-len-type', choices=['mask', 'seq_len'], default='seq_len') | |||
| argument.add_argument('--save-dir', type=str, default=None) | |||
| arg = argument.parse_args() | |||
| bert_dirs = 'path/to/bert/dir' | |||
| # load data set | |||
| data_info = SNLILoader().process( | |||
| paths='path/to/snli/data/dir', to_lower=True, seq_len_type=arg.seq_len_type, bert_tokenizer=None, | |||
| get_index=True, concat=False, | |||
| ) | |||
| # load embedding | |||
| if arg.embedding == 'elmo': | |||
| embedding = ElmoEmbedding(data_info.vocabs[Const.INPUT], requires_grad=True) | |||
| elif arg.embedding == 'glove': | |||
| embedding = StaticEmbedding(data_info.vocabs[Const.INPUT], requires_grad=True) | |||
| else: | |||
| raise ValueError(f'now we only support elmo or glove embedding for esim model!') | |||
| # define model | |||
| model = ESIMModel(embedding) | |||
| # define trainer | |||
| trainer = Trainer(train_data=data_info.datasets['train'], model=model, | |||
| optimizer=Adam(lr=arg.lr, model_params=model.parameters()), | |||
| batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, | |||
| n_epochs=arg.n_epochs, print_every=-1, | |||
| dev_data=data_info.datasets['dev'], | |||
| metrics=AccuracyMetric(), metric_key='acc', | |||
| device=[i for i in range(torch.cuda.device_count())], | |||
| check_code_level=-1, | |||
| save_path=arg.save_path) | |||
| # train model | |||
| trainer.train(load_best_model=True) | |||
| # define tester | |||
| tester = Tester( | |||
| data=data_info.datasets['test'], | |||
| model=model, | |||
| metrics=AccuracyMetric(), | |||
| batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu, | |||
| device=[i for i in range(torch.cuda.device_count())], | |||
| ) | |||
| # test model | |||
| tester.test() | |||
| @@ -30,24 +30,37 @@ class ESIMModel(BaseModel): | |||
| self.bi_attention = SoftmaxAttention() | |||
| self.rnn_high = BiRNN(self.embedding.embed_size, hidden_size, dropout_rate=dropout_rate) | |||
| # self.rnn_high = LSTM(hidden_size, hidden_size, dropout=dropout_rate, bidirectional=True) | |||
| # self.rnn_high = LSTM(hidden_size, hidden_size, dropout=dropout_rate, bidirectional=True,) | |||
| self.classifier = nn.Sequential(nn.Dropout(p=dropout_rate), | |||
| nn.Linear(8 * hidden_size, hidden_size), | |||
| nn.Tanh(), | |||
| nn.Dropout(p=dropout_rate), | |||
| nn.Linear(hidden_size, num_labels)) | |||
| self.dropout_rnn = nn.Dropout(p=dropout_rate) | |||
| nn.init.xavier_uniform_(self.classifier[1].weight.data) | |||
| nn.init.xavier_uniform_(self.classifier[4].weight.data) | |||
| def forward(self, words1, words2, seq_len1, seq_len2, target=None): | |||
| mask1 = seq_len_to_mask(seq_len1) | |||
| mask2 = seq_len_to_mask(seq_len2) | |||
| """ | |||
| :param words1: [batch, seq_len] | |||
| :param words2: [batch, seq_len] | |||
| :param seq_len1: [batch] | |||
| :param seq_len2: [batch] | |||
| :param target: | |||
| :return: | |||
| """ | |||
| mask1 = seq_len_to_mask(seq_len1, words1.size(1)) | |||
| mask2 = seq_len_to_mask(seq_len2, words2.size(1)) | |||
| a0 = self.embedding(words1) # B * len * emb_dim | |||
| b0 = self.embedding(words2) | |||
| a0, b0 = self.dropout_embed(a0), self.dropout_embed(b0) | |||
| a = self.rnn(a0, mask1.byte()) # a: [B, PL, 2 * H] | |||
| b = self.rnn(b0, mask2.byte()) | |||
| # a = self.dropout_rnn(self.rnn(a0, seq_len1)[0]) # a: [B, PL, 2 * H] | |||
| # b = self.dropout_rnn(self.rnn(b0, seq_len2)[0]) | |||
| ai, bi = self.bi_attention(a, mask1, b, mask2) | |||
| @@ -58,6 +71,8 @@ class ESIMModel(BaseModel): | |||
| a_h = self.rnn_high(a_f, mask1.byte()) # ma: [B, PL, 2 * H] | |||
| b_h = self.rnn_high(b_f, mask2.byte()) | |||
| # a_h = self.dropout_rnn(self.rnn_high(a_f, seq_len1)[0]) # ma: [B, PL, 2 * H] | |||
| # b_h = self.dropout_rnn(self.rnn_high(b_f, seq_len2)[0]) | |||
| a_avg = self.mean_pooling(a_h, mask1, dim=1) | |||
| a_max, _ = self.max_pooling(a_h, mask1, dim=1) | |||