| @@ -0,0 +1,80 @@ | |||
| from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
| from fastNLP.core.vocabulary import VocabularyOption | |||
| from fastNLP.io.base_loader import DataSetLoader, DataInfo | |||
| from typing import Union, Dict, List, Iterator | |||
| from fastNLP import DataSet | |||
| from fastNLP import Instance | |||
| from fastNLP import Vocabulary | |||
| from fastNLP import Const | |||
| # from reproduction.utils import check_dataloader_paths | |||
| from functools import partial | |||
| class IMDBLoader(DataSetLoader): | |||
| """ | |||
| 读取IMDB数据集,DataSet包含以下fields: | |||
| words: list(str), 需要分类的文本 | |||
| target: str, 文本的标签 | |||
| """ | |||
| def __init__(self): | |||
| super(IMDBLoader, self).__init__() | |||
| def _load(self, path): | |||
| dataset = DataSet() | |||
| with open(path, 'r', encoding="utf-8") as f: | |||
| for line in f: | |||
| line = line.strip() | |||
| if not line: | |||
| continue | |||
| parts = line.split('\t') | |||
| target = parts[0] | |||
| words = parts[1].lower().split() | |||
| dataset.append(Instance(words=words, target=target)) | |||
| if len(dataset)==0: | |||
| raise RuntimeError(f"{path} has no valid data.") | |||
| return dataset | |||
| def process(self, | |||
| paths: Union[str, Dict[str, str]], | |||
| src_vocab_opt: VocabularyOption = None, | |||
| tgt_vocab_opt: VocabularyOption = None, | |||
| src_embed_opt: EmbeddingOption = None): | |||
| # paths = check_dataloader_paths(paths) | |||
| datasets = {} | |||
| info = DataInfo() | |||
| for name, path in paths.items(): | |||
| dataset = self.load(path) | |||
| datasets[name] = dataset | |||
| datasets["train"], datasets["dev"] = datasets["train"].split(0.1, shuffle=False) | |||
| src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
| src_vocab.from_dataset(datasets['train'], field_name='words') | |||
| src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
| tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
| tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
| info.vocabs = { | |||
| "words": src_vocab, | |||
| "target": tgt_vocab | |||
| } | |||
| info.datasets = datasets | |||
| if src_embed_opt is not None: | |||
| embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
| info.embeddings['words'] = embed | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input("words") | |||
| dataset.set_target("target") | |||
| return info | |||
| @@ -32,7 +32,7 @@ class MTL16Loader(DataSetLoader): | |||
| continue | |||
| parts = line.split('\t') | |||
| target = parts[0] | |||
| words = parts[1].split() | |||
| words = parts[1].lower().split() | |||
| dataset.append(Instance(words=words, target=target)) | |||
| if len(dataset)==0: | |||
| raise RuntimeError(f"{path} has no valid data.") | |||
| @@ -72,4 +72,8 @@ class MTL16Loader(DataSetLoader): | |||
| embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
| info.embeddings['words'] = embed | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input("words") | |||
| dataset.set_target("target") | |||
| return info | |||
| @@ -0,0 +1,99 @@ | |||
| from typing import Iterable | |||
| from nltk import Tree | |||
| from fastNLP.io.base_loader import DataInfo, DataSetLoader | |||
| from fastNLP.core.vocabulary import VocabularyOption, Vocabulary | |||
| from fastNLP import DataSet | |||
| from fastNLP import Instance | |||
| from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
| class SSTLoader(DataSetLoader): | |||
| URL = 'https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip' | |||
| DATA_DIR = 'sst/' | |||
| """ | |||
| 别名::class:`fastNLP.io.SSTLoader` :class:`fastNLP.io.dataset_loader.SSTLoader` | |||
| 读取SST数据集, DataSet包含fields:: | |||
| words: list(str) 需要分类的文本 | |||
| target: str 文本的标签 | |||
| 数据来源: https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip | |||
| :param subtree: 是否将数据展开为子树,扩充数据量. Default: ``False`` | |||
| :param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
| """ | |||
| def __init__(self, subtree=False, fine_grained=False): | |||
| self.subtree = subtree | |||
| tag_v = {'0': 'very negative', '1': 'negative', '2': 'neutral', | |||
| '3': 'positive', '4': 'very positive'} | |||
| if not fine_grained: | |||
| tag_v['0'] = tag_v['1'] | |||
| tag_v['4'] = tag_v['3'] | |||
| self.tag_v = tag_v | |||
| def _load(self, path): | |||
| """ | |||
| :param str path: 存储数据的路径 | |||
| :return: 一个 :class:`~fastNLP.DataSet` 类型的对象 | |||
| """ | |||
| datalist = [] | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| datas = [] | |||
| for l in f: | |||
| datas.extend([(s, self.tag_v[t]) | |||
| for s, t in self._get_one(l, self.subtree)]) | |||
| ds = DataSet() | |||
| for words, tag in datas: | |||
| ds.append(Instance(words=words, target=tag)) | |||
| return ds | |||
| @staticmethod | |||
| def _get_one(data, subtree): | |||
| tree = Tree.fromstring(data) | |||
| if subtree: | |||
| return [(t.leaves(), t.label()) for t in tree.subtrees()] | |||
| return [(tree.leaves(), tree.label())] | |||
| def process(self, | |||
| paths, | |||
| train_ds: Iterable[str] = None, | |||
| src_vocab_op: VocabularyOption = None, | |||
| tgt_vocab_op: VocabularyOption = None, | |||
| src_embed_op: EmbeddingOption = None): | |||
| input_name, target_name = 'words', 'target' | |||
| src_vocab = Vocabulary() if src_vocab_op is None else Vocabulary(**src_vocab_op) | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| if tgt_vocab_op is None else Vocabulary(**tgt_vocab_op) | |||
| info = DataInfo(datasets=self.load(paths)) | |||
| _train_ds = [info.datasets[name] | |||
| for name in train_ds] if train_ds else info.datasets.values() | |||
| src_vocab.from_dataset(*_train_ds, field_name=input_name) | |||
| tgt_vocab.from_dataset(*_train_ds, field_name=target_name) | |||
| src_vocab.index_dataset( | |||
| *info.datasets.values(), | |||
| field_name=input_name, new_field_name=input_name) | |||
| tgt_vocab.index_dataset( | |||
| *info.datasets.values(), | |||
| field_name=target_name, new_field_name=target_name) | |||
| info.vocabs = { | |||
| input_name: src_vocab, | |||
| target_name: tgt_vocab | |||
| } | |||
| if src_embed_op is not None: | |||
| src_embed_op.vocab = src_vocab | |||
| init_emb = EmbedLoader.load_with_vocab(**src_embed_op) | |||
| info.embeddings[input_name] = init_emb | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input(input_name) | |||
| dataset.set_target(target_name) | |||
| return info | |||
| @@ -1,68 +1,77 @@ | |||
| import ast | |||
| from fastNLP import DataSet, Instance, Vocabulary | |||
| from fastNLP.io.embed_loader import EmbeddingOption, EmbedLoader | |||
| from fastNLP.core.vocabulary import VocabularyOption | |||
| from fastNLP.io import JsonLoader | |||
| from fastNLP.io.base_loader import DataInfo | |||
| from fastNLP.io.embed_loader import EmbeddingOption | |||
| from fastNLP.io.file_reader import _read_json | |||
| from typing import Union, Dict | |||
| from reproduction.Star_transformer.datasets import EmbedLoader | |||
| from reproduction.utils import check_dataloader_paths | |||
| from fastNLP.io.base_loader import DataSetLoader, DataInfo | |||
| from typing import Union, Dict, List, Iterator | |||
| from fastNLP import DataSet | |||
| from fastNLP import Instance | |||
| from fastNLP import Vocabulary | |||
| from fastNLP import Const | |||
| # from reproduction.utils import check_dataloader_paths | |||
| from functools import partial | |||
| import pandas as pd | |||
| class yelpLoader(JsonLoader): | |||
| class yelpLoader(DataSetLoader): | |||
| """ | |||
| 读取Yelp数据集, DataSet包含fields: | |||
| review_id: str, 22 character unique review id | |||
| user_id: str, 22 character unique user id | |||
| business_id: str, 22 character business id | |||
| useful: int, number of useful votes received | |||
| funny: int, number of funny votes received | |||
| cool: int, number of cool votes received | |||
| date: str, date formatted YYYY-MM-DD | |||
| 读取IMDB数据集,DataSet包含以下fields: | |||
| words: list(str), 需要分类的文本 | |||
| target: str, 文本的标签 | |||
| 数据来源: https://www.yelp.com/dataset/download | |||
| :param fine_grained: 是否使用SST-5标准,若 ``False`` , 使用SST-2。Default: ``False`` | |||
| """ | |||
| def __init__(self, fine_grained=False): | |||
| def __init__(self): | |||
| super(yelpLoader, self).__init__() | |||
| tag_v = {'1.0': 'very negative', '2.0': 'negative', '3.0': 'neutral', | |||
| '4.0': 'positive', '5.0': 'very positive'} | |||
| if not fine_grained: | |||
| tag_v['1.0'] = tag_v['2.0'] | |||
| tag_v['5.0'] = tag_v['4.0'] | |||
| self.fine_grained = fine_grained | |||
| self.tag_v = tag_v | |||
| def _load(self, path): | |||
| ds = DataSet() | |||
| for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||
| d = ast.literal_eval(d) | |||
| d["words"] = d.pop("text").split() | |||
| d["target"] = self.tag_v[str(d.pop("stars"))] | |||
| ds.append(Instance(**d)) | |||
| return ds | |||
| dataset = DataSet() | |||
| data = pd.read_csv(path, header=None, sep=",").values | |||
| for line in data: | |||
| target = str(line[0]) | |||
| words = str(line[1]).lower().split() | |||
| dataset.append(Instance(words=words, target=target)) | |||
| if len(dataset)==0: | |||
| raise RuntimeError(f"{path} has no valid data.") | |||
| def process(self, paths: Union[str, Dict[str, str]], vocab_opt: VocabularyOption = None, | |||
| embed_opt: EmbeddingOption = None): | |||
| paths = check_dataloader_paths(paths) | |||
| return dataset | |||
| def process(self, | |||
| paths: Union[str, Dict[str, str]], | |||
| src_vocab_opt: VocabularyOption = None, | |||
| tgt_vocab_opt: VocabularyOption = None, | |||
| src_embed_opt: EmbeddingOption = None): | |||
| # paths = check_dataloader_paths(paths) | |||
| datasets = {} | |||
| info = DataInfo() | |||
| vocab = Vocabulary(min_freq=2) if vocab_opt is None else Vocabulary(**vocab_opt) | |||
| for name, path in paths.items(): | |||
| dataset = self.load(path) | |||
| datasets[name] = dataset | |||
| vocab.from_dataset(dataset, field_name="words") | |||
| info.vocabs = vocab | |||
| datasets["train"], datasets["dev"] = datasets["train"].split(0.1, shuffle=False) | |||
| src_vocab = Vocabulary() if src_vocab_opt is None else Vocabulary(**src_vocab_opt) | |||
| src_vocab.from_dataset(datasets['train'], field_name='words') | |||
| src_vocab.index_dataset(*datasets.values(), field_name='words') | |||
| tgt_vocab = Vocabulary(unknown=None, padding=None) \ | |||
| if tgt_vocab_opt is None else Vocabulary(**tgt_vocab_opt) | |||
| tgt_vocab.from_dataset(datasets['train'], field_name='target') | |||
| tgt_vocab.index_dataset(*datasets.values(), field_name='target') | |||
| info.vocabs = { | |||
| "words": src_vocab, | |||
| "target": tgt_vocab | |||
| } | |||
| info.datasets = datasets | |||
| if embed_opt is not None: | |||
| embed = EmbedLoader.load_with_vocab(**embed_opt, vocab=vocab) | |||
| if src_embed_opt is not None: | |||
| embed = EmbedLoader.load_with_vocab(**src_embed_opt, vocab=src_vocab) | |||
| info.embeddings['words'] = embed | |||
| return info | |||
| for name, dataset in info.datasets.items(): | |||
| dataset.set_input("words") | |||
| dataset.set_target("target") | |||
| return info | |||
| @@ -0,0 +1,31 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from fastNLP.core.const import Const as C | |||
| from .awdlstm_module import LSTM | |||
| from fastNLP.modules import encoder | |||
| from fastNLP.modules.decoder.mlp import MLP | |||
| class AWDLSTMSentiment(nn.Module): | |||
| def __init__(self, init_embed, | |||
| num_classes, | |||
| hidden_dim=256, | |||
| num_layers=1, | |||
| nfc=128, | |||
| wdrop=0.5): | |||
| super(AWDLSTMSentiment,self).__init__() | |||
| self.embed = encoder.Embedding(init_embed) | |||
| self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True, wdrop=wdrop) | |||
| self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes]) | |||
| def forward(self, words): | |||
| x_emb = self.embed(words) | |||
| output, _ = self.lstm(x_emb) | |||
| output = self.mlp(output[:,-1,:]) | |||
| return {C.OUTPUT: output} | |||
| def predict(self, words): | |||
| output = self(words) | |||
| _, predict = output[C.OUTPUT].max(dim=1) | |||
| return {C.OUTPUT: predict} | |||
| @@ -0,0 +1,86 @@ | |||
| """ | |||
| 轻量封装的 Pytorch LSTM 模块. | |||
| 可在 forward 时传入序列的长度, 自动对padding做合适的处理. | |||
| """ | |||
| __all__ = [ | |||
| "LSTM" | |||
| ] | |||
| import torch | |||
| import torch.nn as nn | |||
| import torch.nn.utils.rnn as rnn | |||
| from fastNLP.modules.utils import initial_parameter | |||
| from torch import autograd | |||
| from .weight_drop import WeightDrop | |||
| class LSTM(nn.Module): | |||
| """ | |||
| 别名::class:`fastNLP.modules.LSTM` :class:`fastNLP.modules.encoder.lstm.LSTM` | |||
| LSTM 模块, 轻量封装的Pytorch LSTM. 在提供seq_len的情况下,将自动使用pack_padded_sequence; 同时默认将forget gate的bias初始化 | |||
| 为1; 且可以应对DataParallel中LSTM的使用问题。 | |||
| :param input_size: 输入 `x` 的特征维度 | |||
| :param hidden_size: 隐状态 `h` 的特征维度. | |||
| :param num_layers: rnn的层数. Default: 1 | |||
| :param dropout: 层间dropout概率. Default: 0 | |||
| :param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False`` | |||
| :param batch_first: 若为 ``True``, 输入和输出 ``Tensor`` 形状为 | |||
| :(batch, seq, feature). Default: ``False`` | |||
| :param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True`` | |||
| """ | |||
| def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True, | |||
| bidirectional=False, bias=True, wdrop=0.5): | |||
| super(LSTM, self).__init__() | |||
| self.batch_first = batch_first | |||
| self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first, | |||
| dropout=dropout, bidirectional=bidirectional) | |||
| self.lstm = WeightDrop(self.lstm, ['weight_hh_l0'], dropout=wdrop) | |||
| self.init_param() | |||
| def init_param(self): | |||
| for name, param in self.named_parameters(): | |||
| if 'bias' in name: | |||
| # based on https://github.com/pytorch/pytorch/issues/750#issuecomment-280671871 | |||
| param.data.fill_(0) | |||
| n = param.size(0) | |||
| start, end = n // 4, n // 2 | |||
| param.data[start:end].fill_(1) | |||
| else: | |||
| nn.init.xavier_uniform_(param) | |||
| def forward(self, x, seq_len=None, h0=None, c0=None): | |||
| """ | |||
| :param x: [batch, seq_len, input_size] 输入序列 | |||
| :param seq_len: [batch, ] 序列长度, 若为 ``None``, 所有输入看做一样长. Default: ``None`` | |||
| :param h0: [batch, hidden_size] 初始隐状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
| :param c0: [batch, hidden_size] 初始Cell状态, 若为 ``None`` , 设为全0向量. Default: ``None`` | |||
| :return (output, ht) 或 output: 若 ``get_hidden=True`` [batch, seq_len, hidden_size*num_direction] 输出序列 | |||
| 和 [batch, hidden_size*num_direction] 最后时刻隐状态. | |||
| """ | |||
| batch_size, max_len, _ = x.size() | |||
| if h0 is not None and c0 is not None: | |||
| hx = (h0, c0) | |||
| else: | |||
| hx = None | |||
| if seq_len is not None and not isinstance(x, rnn.PackedSequence): | |||
| sort_lens, sort_idx = torch.sort(seq_len, dim=0, descending=True) | |||
| if self.batch_first: | |||
| x = x[sort_idx] | |||
| else: | |||
| x = x[:, sort_idx] | |||
| x = rnn.pack_padded_sequence(x, sort_lens, batch_first=self.batch_first) | |||
| output, hx = self.lstm(x, hx) # -> [N,L,C] | |||
| output, _ = rnn.pad_packed_sequence(output, batch_first=self.batch_first, total_length=max_len) | |||
| _, unsort_idx = torch.sort(sort_idx, dim=0, descending=False) | |||
| if self.batch_first: | |||
| output = output[unsort_idx] | |||
| else: | |||
| output = output[:, unsort_idx] | |||
| else: | |||
| output, hx = self.lstm(x, hx) | |||
| return output, hx | |||
| @@ -0,0 +1,30 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP.modules.encoder.lstm import LSTM | |||
| from fastNLP.modules import encoder | |||
| from fastNLP.modules.decoder.mlp import MLP | |||
| class BiLSTMSentiment(nn.Module): | |||
| def __init__(self, init_embed, | |||
| num_classes, | |||
| hidden_dim=256, | |||
| num_layers=1, | |||
| nfc=128): | |||
| super(BiLSTMSentiment,self).__init__() | |||
| self.embed = encoder.Embedding(init_embed) | |||
| self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True) | |||
| self.mlp = MLP(size_layer=[hidden_dim* 2, nfc, num_classes]) | |||
| def forward(self, words): | |||
| x_emb = self.embed(words) | |||
| output, _ = self.lstm(x_emb) | |||
| output = self.mlp(output[:,-1,:]) | |||
| return {C.OUTPUT: output} | |||
| def predict(self, words): | |||
| output = self(words) | |||
| _, predict = output[C.OUTPUT].max(dim=1) | |||
| return {C.OUTPUT: predict} | |||
| @@ -0,0 +1,35 @@ | |||
| import torch | |||
| import torch.nn as nn | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP.modules.encoder.lstm import LSTM | |||
| from fastNLP.modules import encoder | |||
| from fastNLP.modules.aggregator.attention import SelfAttention | |||
| from fastNLP.modules.decoder.mlp import MLP | |||
| class BiLSTM_SELF_ATTENTION(nn.Module): | |||
| def __init__(self, init_embed, | |||
| num_classes, | |||
| hidden_dim=256, | |||
| num_layers=1, | |||
| attention_unit=256, | |||
| attention_hops=1, | |||
| nfc=128): | |||
| super(BiLSTM_SELF_ATTENTION,self).__init__() | |||
| self.embed = encoder.Embedding(init_embed) | |||
| self.lstm = LSTM(input_size=self.embed.embedding_dim, hidden_size=hidden_dim, num_layers=num_layers, bidirectional=True) | |||
| self.attention = SelfAttention(input_size=hidden_dim * 2 , attention_unit=attention_unit, attention_hops=attention_hops) | |||
| self.mlp = MLP(size_layer=[hidden_dim* 2*attention_hops, nfc, num_classes]) | |||
| def forward(self, words): | |||
| x_emb = self.embed(words) | |||
| output, _ = self.lstm(x_emb) | |||
| after_attention, penalty = self.attention(output,words) | |||
| after_attention =after_attention.view(after_attention.size(0),-1) | |||
| output = self.mlp(after_attention) | |||
| return {C.OUTPUT: output} | |||
| def predict(self, words): | |||
| output = self(words) | |||
| _, predict = output[C.OUTPUT].max(dim=1) | |||
| return {C.OUTPUT: predict} | |||
| @@ -0,0 +1,99 @@ | |||
| import torch | |||
| from torch.nn import Parameter | |||
| from functools import wraps | |||
| class WeightDrop(torch.nn.Module): | |||
| def __init__(self, module, weights, dropout=0, variational=False): | |||
| super(WeightDrop, self).__init__() | |||
| self.module = module | |||
| self.weights = weights | |||
| self.dropout = dropout | |||
| self.variational = variational | |||
| self._setup() | |||
| def widget_demagnetizer_y2k_edition(*args, **kwargs): | |||
| # We need to replace flatten_parameters with a nothing function | |||
| # It must be a function rather than a lambda as otherwise pickling explodes | |||
| # We can't write boring code though, so ... WIDGET DEMAGNETIZER Y2K EDITION! | |||
| # (╯°□°)╯︵ ┻━┻ | |||
| return | |||
| def _setup(self): | |||
| # Terrible temporary solution to an issue regarding compacting weights re: CUDNN RNN | |||
| if issubclass(type(self.module), torch.nn.RNNBase): | |||
| self.module.flatten_parameters = self.widget_demagnetizer_y2k_edition | |||
| for name_w in self.weights: | |||
| print('Applying weight drop of {} to {}'.format(self.dropout, name_w)) | |||
| w = getattr(self.module, name_w) | |||
| del self.module._parameters[name_w] | |||
| self.module.register_parameter(name_w + '_raw', Parameter(w.data)) | |||
| def _setweights(self): | |||
| for name_w in self.weights: | |||
| raw_w = getattr(self.module, name_w + '_raw') | |||
| w = None | |||
| if self.variational: | |||
| mask = torch.autograd.Variable(torch.ones(raw_w.size(0), 1)) | |||
| if raw_w.is_cuda: mask = mask.cuda() | |||
| mask = torch.nn.functional.dropout(mask, p=self.dropout, training=True) | |||
| w = mask.expand_as(raw_w) * raw_w | |||
| else: | |||
| w = torch.nn.functional.dropout(raw_w, p=self.dropout, training=self.training) | |||
| setattr(self.module, name_w, w) | |||
| def forward(self, *args): | |||
| self._setweights() | |||
| return self.module.forward(*args) | |||
| if __name__ == '__main__': | |||
| import torch | |||
| from weight_drop import WeightDrop | |||
| # Input is (seq, batch, input) | |||
| x = torch.autograd.Variable(torch.randn(2, 1, 10)).cuda() | |||
| h0 = None | |||
| ### | |||
| print('Testing WeightDrop') | |||
| print('=-=-=-=-=-=-=-=-=-=') | |||
| ### | |||
| print('Testing WeightDrop with Linear') | |||
| lin = WeightDrop(torch.nn.Linear(10, 10), ['weight'], dropout=0.9) | |||
| lin.cuda() | |||
| run1 = [x.sum() for x in lin(x).data] | |||
| run2 = [x.sum() for x in lin(x).data] | |||
| print('All items should be different') | |||
| print('Run 1:', run1) | |||
| print('Run 2:', run2) | |||
| assert run1[0] != run2[0] | |||
| assert run1[1] != run2[1] | |||
| print('---') | |||
| ### | |||
| print('Testing WeightDrop with LSTM') | |||
| wdrnn = WeightDrop(torch.nn.LSTM(10, 10), ['weight_hh_l0'], dropout=0.9) | |||
| wdrnn.cuda() | |||
| run1 = [x.sum() for x in wdrnn(x, h0)[0].data] | |||
| run2 = [x.sum() for x in wdrnn(x, h0)[0].data] | |||
| print('First timesteps should be equal, all others should differ') | |||
| print('Run 1:', run1) | |||
| print('Run 2:', run2) | |||
| # First time step, not influenced by hidden to hidden weights, should be equal | |||
| assert run1[0] == run2[0] | |||
| # Second step should not | |||
| assert run1[1] != run2[1] | |||
| print('---') | |||
| @@ -0,0 +1,102 @@ | |||
| # 这个模型需要在pytorch=0.4下运行,weight_drop不支持1.0 | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| import torch.nn as nn | |||
| from data.SSTLoader import SSTLoader | |||
| from data.IMDBLoader import IMDBLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
| from model.awd_lstm import AWDLSTMSentiment | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP import Trainer, Tester | |||
| from torch.optim import Adam | |||
| from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
| import argparse | |||
| class Config(): | |||
| train_epoch= 10 | |||
| lr=0.001 | |||
| num_classes=2 | |||
| hidden_dim=256 | |||
| num_layers=1 | |||
| nfc=128 | |||
| wdrop=0.5 | |||
| task_name = "IMDB" | |||
| datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
| load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
| save_model_path="./result_IMDB_test/" | |||
| opt=Config | |||
| # load data | |||
| dataloaders = { | |||
| "IMDB":IMDBLoader(), | |||
| "YELP":yelpLoader(), | |||
| "SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
| "SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
| } | |||
| if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
| raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
| dataloader = dataloaders[opt.task_name] | |||
| datainfo=dataloader.process(opt.datapath) | |||
| # print(datainfo.datasets["train"]) | |||
| # print(datainfo) | |||
| # define model | |||
| vocab=datainfo.vocabs['words'] | |||
| embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
| model=AWDLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc, wdrop=opt.wdrop) | |||
| # define loss_function and metrics | |||
| loss=CrossEntropyLoss() | |||
| metrics=AccuracyMetric() | |||
| optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
| def train(datainfo, model, optimizer, loss, metrics, opt): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
| n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
| trainer.train() | |||
| def test(datainfo, metrics, opt): | |||
| # load model | |||
| model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
| print("model loaded!") | |||
| # Tester | |||
| tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
| acc = tester.test() | |||
| print("acc=",acc) | |||
| parser = argparse.ArgumentParser() | |||
| parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
| args = parser.parse_args() | |||
| if args.mode == 'train': | |||
| train(datainfo, model, optimizer, loss, metrics, opt) | |||
| elif args.mode == 'test': | |||
| test(datainfo, metrics, opt) | |||
| else: | |||
| print('no mode specified for model!') | |||
| parser.print_help() | |||
| @@ -0,0 +1,99 @@ | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| import torch.nn as nn | |||
| from data.SSTLoader import SSTLoader | |||
| from data.IMDBLoader import IMDBLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
| from model.lstm import BiLSTMSentiment | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP import Trainer, Tester | |||
| from torch.optim import Adam | |||
| from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
| import argparse | |||
| class Config(): | |||
| train_epoch= 10 | |||
| lr=0.001 | |||
| num_classes=2 | |||
| hidden_dim=256 | |||
| num_layers=1 | |||
| nfc=128 | |||
| task_name = "IMDB" | |||
| datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
| load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
| save_model_path="./result_IMDB_test/" | |||
| opt=Config | |||
| # load data | |||
| dataloaders = { | |||
| "IMDB":IMDBLoader(), | |||
| "YELP":yelpLoader(), | |||
| "SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
| "SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
| } | |||
| if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
| raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
| dataloader = dataloaders[opt.task_name] | |||
| datainfo=dataloader.process(opt.datapath) | |||
| # print(datainfo.datasets["train"]) | |||
| # print(datainfo) | |||
| # define model | |||
| vocab=datainfo.vocabs['words'] | |||
| embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
| model=BiLSTMSentiment(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, nfc=opt.nfc) | |||
| # define loss_function and metrics | |||
| loss=CrossEntropyLoss() | |||
| metrics=AccuracyMetric() | |||
| optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
| def train(datainfo, model, optimizer, loss, metrics, opt): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
| n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
| trainer.train() | |||
| def test(datainfo, metrics, opt): | |||
| # load model | |||
| model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
| print("model loaded!") | |||
| # Tester | |||
| tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
| acc = tester.test() | |||
| print("acc=",acc) | |||
| parser = argparse.ArgumentParser() | |||
| parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
| args = parser.parse_args() | |||
| if args.mode == 'train': | |||
| train(datainfo, model, optimizer, loss, metrics, opt) | |||
| elif args.mode == 'test': | |||
| test(datainfo, metrics, opt) | |||
| else: | |||
| print('no mode specified for model!') | |||
| parser.print_help() | |||
| @@ -0,0 +1,101 @@ | |||
| # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径 | |||
| import os | |||
| os.environ['FASTNLP_BASE_URL'] = 'http://10.141.222.118:8888/file/download/' | |||
| os.environ['FASTNLP_CACHE_DIR'] = '/remote-home/hyan01/fastnlp_caches' | |||
| import torch.nn as nn | |||
| from data.SSTLoader import SSTLoader | |||
| from data.IMDBLoader import IMDBLoader | |||
| from data.yelpLoader import yelpLoader | |||
| from fastNLP.modules.encoder.embedding import StaticEmbedding | |||
| from model.lstm_self_attention import BiLSTM_SELF_ATTENTION | |||
| from fastNLP.core.const import Const as C | |||
| from fastNLP import CrossEntropyLoss, AccuracyMetric | |||
| from fastNLP import Trainer, Tester | |||
| from torch.optim import Adam | |||
| from fastNLP.io.model_io import ModelLoader, ModelSaver | |||
| import argparse | |||
| class Config(): | |||
| train_epoch= 10 | |||
| lr=0.001 | |||
| num_classes=2 | |||
| hidden_dim=256 | |||
| num_layers=1 | |||
| attention_unit=256 | |||
| attention_hops=1 | |||
| nfc=128 | |||
| task_name = "IMDB" | |||
| datapath={"train":"IMDB_data/train.csv", "test":"IMDB_data/test.csv"} | |||
| load_model_path="./result_IMDB/best_BiLSTM_SELF_ATTENTION_acc_2019-07-07-04-16-51" | |||
| save_model_path="./result_IMDB_test/" | |||
| opt=Config | |||
| # load data | |||
| dataloaders = { | |||
| "IMDB":IMDBLoader(), | |||
| "YELP":yelpLoader(), | |||
| "SST-5":SSTLoader(subtree=True,fine_grained=True), | |||
| "SST-3":SSTLoader(subtree=True,fine_grained=False) | |||
| } | |||
| if opt.task_name not in ["IMDB", "YELP", "SST-5", "SST-3"]: | |||
| raise ValueError("task name must in ['IMDB', 'YELP, 'SST-5', 'SST-3']") | |||
| dataloader = dataloaders[opt.task_name] | |||
| datainfo=dataloader.process(opt.datapath) | |||
| # print(datainfo.datasets["train"]) | |||
| # print(datainfo) | |||
| # define model | |||
| vocab=datainfo.vocabs['words'] | |||
| embed = StaticEmbedding(vocab, model_dir_or_name='en-glove-840b-300', requires_grad=True) | |||
| model=BiLSTM_SELF_ATTENTION(init_embed=embed, num_classes=opt.num_classes, hidden_dim=opt.hidden_dim, num_layers=opt.num_layers, attention_unit=opt.attention_unit, attention_hops=opt.attention_hops, nfc=opt.nfc) | |||
| # define loss_function and metrics | |||
| loss=CrossEntropyLoss() | |||
| metrics=AccuracyMetric() | |||
| optimizer= Adam([param for param in model.parameters() if param.requires_grad==True], lr=opt.lr) | |||
| def train(datainfo, model, optimizer, loss, metrics, opt): | |||
| trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss, | |||
| metrics=metrics, dev_data=datainfo.datasets['dev'], device=0, check_code_level=-1, | |||
| n_epochs=opt.train_epoch, save_path=opt.save_model_path) | |||
| trainer.train() | |||
| def test(datainfo, metrics, opt): | |||
| # load model | |||
| model = ModelLoader.load_pytorch_model(opt.load_model_path) | |||
| print("model loaded!") | |||
| # Tester | |||
| tester = Tester(datainfo.datasets['test'], model, metrics, batch_size=4, device=0) | |||
| acc = tester.test() | |||
| print("acc=",acc) | |||
| parser = argparse.ArgumentParser() | |||
| parser.add_argument('--mode', required=True, dest="mode",help='set the model\'s model') | |||
| args = parser.parse_args() | |||
| if args.mode == 'train': | |||
| train(datainfo, model, optimizer, loss, metrics, opt) | |||
| elif args.mode == 'test': | |||
| test(datainfo, metrics, opt) | |||
| else: | |||
| print('no mode specified for model!') | |||
| parser.print_help() | |||