| @@ -71,7 +71,9 @@ __all__ = [ | |||
| "QuoraLoader", | |||
| "SNLILoader", | |||
| "QNLILoader", | |||
| "RTELoader" | |||
| "RTELoader", | |||
| "CRLoader" | |||
| ] | |||
| from .classification import YelpLoader, YelpFullLoader, YelpPolarityLoader, IMDBLoader, SSTLoader, SST2Loader | |||
| from .conll import ConllLoader, Conll2003Loader, Conll2003NERLoader, OntoNotesNERLoader, CTBLoader | |||
| @@ -81,3 +83,4 @@ from .json import JsonLoader | |||
| from .loader import Loader | |||
| from .matching import MNLILoader, QuoraLoader, SNLILoader, QNLILoader, RTELoader | |||
| from .conll import MsraNERLoader, PeopleDailyNERLoader, WeiboNERLoader | |||
| from .coreference import CRLoader | |||
| @@ -0,0 +1,24 @@ | |||
| from ...core.dataset import DataSet | |||
| from ..file_reader import _read_json | |||
| from ...core.instance import Instance | |||
| from .json import JsonLoader | |||
| class CRLoader(JsonLoader): | |||
| def __init__(self, fields=None, dropna=False): | |||
| super().__init__(fields, dropna) | |||
| def _load(self, path): | |||
| """ | |||
| 加载数据 | |||
| :param path: | |||
| :return: | |||
| """ | |||
| dataset = DataSet() | |||
| for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||
| if self.fields: | |||
| ins = {self.fields[k]: v for k, v in d.items()} | |||
| else: | |||
| ins = d | |||
| dataset.append(Instance(**ins)) | |||
| return dataset | |||
| @@ -37,6 +37,8 @@ __all__ = [ | |||
| "QuoraPipe", | |||
| "QNLIPipe", | |||
| "MNLIPipe", | |||
| "CoreferencePipe" | |||
| ] | |||
| from .classification import YelpFullPipe, YelpPolarityPipe, SSTPipe, SST2Pipe, IMDBPipe | |||
| @@ -46,3 +48,4 @@ from .matching import MatchingBertPipe, RTEBertPipe, SNLIBertPipe, QuoraBertPipe | |||
| from .pipe import Pipe | |||
| from .conll import Conll2003Pipe | |||
| from .cws import CWSPipe | |||
| from .coreference import CoreferencePipe | |||
| @@ -0,0 +1,115 @@ | |||
| __all__ = [ | |||
| "CoreferencePipe" | |||
| ] | |||
| from .pipe import Pipe | |||
| from ..data_bundle import DataBundle | |||
| from ..loader.coreference import CRLoader | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| import numpy as np | |||
| import collections | |||
| class CoreferencePipe(Pipe): | |||
| def __init__(self,config): | |||
| super().__init__() | |||
| self.config = config | |||
| def process(self, data_bundle: DataBundle): | |||
| genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||
| vocab = Vocabulary().from_dataset(*data_bundle.datasets.values(), field_name='sentences') | |||
| vocab.build_vocab() | |||
| word2id = vocab.word2idx | |||
| char_dict = get_char_dict(self.config.char_path) | |||
| for name, ds in data_bundle.datasets.items(): | |||
| ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||
| self.config.max_sentences, is_train=name == 'train')[0], | |||
| new_field_name='doc_np') | |||
| ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||
| self.config.max_sentences, is_train=name == 'train')[1], | |||
| new_field_name='char_index') | |||
| ds.apply(lambda x: doc2numpy(x['sentences'], word2id, char_dict, max(self.config.filter), | |||
| self.config.max_sentences, is_train=name == 'train')[2], | |||
| new_field_name='seq_len') | |||
| ds.apply(lambda x: speaker2numpy(x["speakers"], self.config.max_sentences, is_train=name == 'train'), | |||
| new_field_name='speaker_ids_np') | |||
| ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') | |||
| ds.set_ignore_type('clusters') | |||
| ds.set_padder('clusters', None) | |||
| ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") | |||
| ds.set_target("clusters") | |||
| return data_bundle | |||
| def process_from_file(self, paths): | |||
| bundle = CRLoader().load(paths) | |||
| return self.process(bundle) | |||
| # helper | |||
| def doc2numpy(doc, word2id, chardict, max_filter, max_sentences, is_train): | |||
| docvec, char_index, length, max_len = _doc2vec(doc, word2id, chardict, max_filter, max_sentences, is_train) | |||
| assert max(length) == max_len | |||
| assert char_index.shape[0] == len(length) | |||
| assert char_index.shape[1] == max_len | |||
| doc_np = np.zeros((len(docvec), max_len), int) | |||
| for i in range(len(docvec)): | |||
| for j in range(len(docvec[i])): | |||
| doc_np[i][j] = docvec[i][j] | |||
| return doc_np, char_index, length | |||
| def _doc2vec(doc,word2id,char_dict,max_filter,max_sentences,is_train): | |||
| max_len = 0 | |||
| max_word_length = 0 | |||
| docvex = [] | |||
| length = [] | |||
| if is_train: | |||
| sent_num = min(max_sentences,len(doc)) | |||
| else: | |||
| sent_num = len(doc) | |||
| for i in range(sent_num): | |||
| sent = doc[i] | |||
| length.append(len(sent)) | |||
| if (len(sent) > max_len): | |||
| max_len = len(sent) | |||
| sent_vec =[] | |||
| for j,word in enumerate(sent): | |||
| if len(word)>max_word_length: | |||
| max_word_length = len(word) | |||
| if word in word2id: | |||
| sent_vec.append(word2id[word]) | |||
| else: | |||
| sent_vec.append(word2id["UNK"]) | |||
| docvex.append(sent_vec) | |||
| char_index = np.zeros((sent_num, max_len, max_word_length),dtype=int) | |||
| for i in range(sent_num): | |||
| sent = doc[i] | |||
| for j,word in enumerate(sent): | |||
| char_index[i, j, :len(word)] = [char_dict[c] for c in word] | |||
| return docvex,char_index,length,max_len | |||
| def speaker2numpy(speakers_raw,max_sentences,is_train): | |||
| if is_train and len(speakers_raw)> max_sentences: | |||
| speakers_raw = speakers_raw[0:max_sentences] | |||
| speakers = flatten(speakers_raw) | |||
| speaker_dict = {s: i for i, s in enumerate(set(speakers))} | |||
| speaker_ids = np.array([speaker_dict[s] for s in speakers]) | |||
| return speaker_ids | |||
| # 展平 | |||
| def flatten(l): | |||
| return [item for sublist in l for item in sublist] | |||
| def get_char_dict(path): | |||
| vocab = ["<UNK>"] | |||
| with open(path) as f: | |||
| vocab.extend(c.strip() for c in f.readlines()) | |||
| char_dict = collections.defaultdict(int) | |||
| char_dict.update({c: i for i, c in enumerate(vocab)}) | |||
| return char_dict | |||
| @@ -1,4 +1,4 @@ | |||
| # 共指消解复现 | |||
| # 指代消解复现 | |||
| ## 介绍 | |||
| Coreference resolution是查找文本中指向同一现实实体的所有表达式的任务。 | |||
| 对于涉及自然语言理解的许多更高级别的NLP任务来说, | |||
| @@ -1,68 +0,0 @@ | |||
| from fastNLP.io.dataset_loader import JsonLoader,DataSet,Instance | |||
| from fastNLP.io.file_reader import _read_json | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| from fastNLP.io.data_bundle import DataBundle | |||
| from reproduction.coreference_resolution.model.config import Config | |||
| import reproduction.coreference_resolution.model.preprocess as preprocess | |||
| class CRLoader(JsonLoader): | |||
| def __init__(self, fields=None, dropna=False): | |||
| super().__init__(fields, dropna) | |||
| def _load(self, path): | |||
| """ | |||
| 加载数据 | |||
| :param path: | |||
| :return: | |||
| """ | |||
| dataset = DataSet() | |||
| for idx, d in _read_json(path, fields=self.fields_list, dropna=self.dropna): | |||
| if self.fields: | |||
| ins = {self.fields[k]: v for k, v in d.items()} | |||
| else: | |||
| ins = d | |||
| dataset.append(Instance(**ins)) | |||
| return dataset | |||
| def process(self, paths, **kwargs): | |||
| data_info = DataBundle() | |||
| for name in ['train', 'test', 'dev']: | |||
| data_info.datasets[name] = self.load(paths[name]) | |||
| config = Config() | |||
| vocab = Vocabulary().from_dataset(*data_info.datasets.values(), field_name='sentences') | |||
| vocab.build_vocab() | |||
| word2id = vocab.word2idx | |||
| char_dict = preprocess.get_char_dict(config.char_path) | |||
| data_info.vocabs = vocab | |||
| genres = {g: i for i, g in enumerate(["bc", "bn", "mz", "nw", "pt", "tc", "wb"])} | |||
| for name, ds in data_info.datasets.items(): | |||
| ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||
| config.max_sentences, is_train=name=='train')[0], | |||
| new_field_name='doc_np') | |||
| ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||
| config.max_sentences, is_train=name=='train')[1], | |||
| new_field_name='char_index') | |||
| ds.apply(lambda x: preprocess.doc2numpy(x['sentences'], word2id, char_dict, max(config.filter), | |||
| config.max_sentences, is_train=name=='train')[2], | |||
| new_field_name='seq_len') | |||
| ds.apply(lambda x: preprocess.speaker2numpy(x["speakers"], config.max_sentences, is_train=name=='train'), | |||
| new_field_name='speaker_ids_np') | |||
| ds.apply(lambda x: genres[x["doc_key"][:2]], new_field_name='genre') | |||
| ds.set_ignore_type('clusters') | |||
| ds.set_padder('clusters', None) | |||
| ds.set_input("sentences", "doc_np", "speaker_ids_np", "genre", "char_index", "seq_len") | |||
| ds.set_target("clusters") | |||
| # train_dev, test = self.ds.split(348 / (2802 + 343 + 348), shuffle=False) | |||
| # train, dev = train_dev.split(343 / (2802 + 343), shuffle=False) | |||
| return data_info | |||
| @@ -1,14 +1,14 @@ | |||
| import unittest | |||
| from ..data_load.cr_loader import CRLoader | |||
| from fastNLP.io.pipe.coreference import CoreferencePipe | |||
| from reproduction.coreference_resolution.model.config import Config | |||
| class Test_CRLoader(unittest.TestCase): | |||
| def test_cr_loader(self): | |||
| train_path = 'data/train.english.jsonlines.mini' | |||
| dev_path = 'data/dev.english.jsonlines.minid' | |||
| test_path = 'data/test.english.jsonlines' | |||
| cr = CRLoader() | |||
| data_info = cr.process({'train':train_path,'dev':dev_path,'test':test_path}) | |||
| print(data_info.datasets['train'][0]) | |||
| print(data_info.datasets['dev'][0]) | |||
| print(data_info.datasets['test'][0]) | |||
| config = Config() | |||
| bundle = CoreferencePipe(config).process_from_file({'train': config.train_path, 'dev': config.dev_path,'test': config.test_path}) | |||
| print(bundle.datasets['train'][0]) | |||
| print(bundle.datasets['dev'][0]) | |||
| print(bundle.datasets['test'][0]) | |||
| @@ -7,7 +7,8 @@ from torch.optim import Adam | |||
| from fastNLP.core.callback import Callback, GradientClipCallback | |||
| from fastNLP.core.trainer import Trainer | |||
| from reproduction.coreference_resolution.data_load.cr_loader import CRLoader | |||
| from fastNLP.io.pipe.coreference import CoreferencePipe | |||
| from reproduction.coreference_resolution.model.config import Config | |||
| from reproduction.coreference_resolution.model.model_re import Model | |||
| from reproduction.coreference_resolution.model.softmax_loss import SoftmaxLoss | |||
| @@ -38,11 +39,8 @@ if __name__ == "__main__": | |||
| @cache_results('cache.pkl') | |||
| def cache(): | |||
| cr_train_dev_test = CRLoader() | |||
| data_info = cr_train_dev_test.process({'train': config.train_path, 'dev': config.dev_path, | |||
| 'test': config.test_path}) | |||
| return data_info | |||
| bundle = CoreferencePipe(Config()).process_from_file({'train': config.train_path, 'dev': config.dev_path,'test': config.test_path}) | |||
| return bundle | |||
| data_info = cache() | |||
| print("数据集划分:\ntrain:", str(len(data_info.datasets["train"])), | |||
| "\ndev:" + str(len(data_info.datasets["dev"])) + "\ntest:" + str(len(data_info.datasets["test"]))) | |||
| @@ -1,7 +1,8 @@ | |||
| import torch | |||
| from reproduction.coreference_resolution.model.config import Config | |||
| from reproduction.coreference_resolution.model.metric import CRMetric | |||
| from reproduction.coreference_resolution.data_load.cr_loader import CRLoader | |||
| from fastNLP.io.pipe.coreference import CoreferencePipe | |||
| from fastNLP import Tester | |||
| import argparse | |||
| @@ -11,13 +12,12 @@ if __name__=='__main__': | |||
| parser.add_argument('--path') | |||
| args = parser.parse_args() | |||
| cr_loader = CRLoader() | |||
| config = Config() | |||
| data_info = cr_loader.process({'train': config.train_path, 'dev': config.dev_path, | |||
| 'test': config.test_path}) | |||
| bundle = CoreferencePipe(Config()).process_from_file( | |||
| {'train': config.train_path, 'dev': config.dev_path, 'test': config.test_path}) | |||
| metirc = CRMetric() | |||
| model = torch.load(args.path) | |||
| tester = Tester(data_info.datasets['test'],model,metirc,batch_size=1,device="cuda:0") | |||
| tester = Tester(bundle.datasets['test'],model,metirc,batch_size=1,device="cuda:0") | |||
| tester.test() | |||
| print('test over') | |||