| @@ -464,6 +464,9 @@ | |||
| } | |||
| ], | |||
| "source": [ | |||
| "import sys\n", | |||
| "sys.path.append('..')\n", | |||
| "\n", | |||
| "from fastNLP import Trainer\n", | |||
| "\n", | |||
| "trainer = Trainer(\n", | |||
| @@ -613,11 +616,11 @@ | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'acc#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.41</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'total#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'correct#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">41.0</span><span style=\"font-weight: bold\">}</span>\n", | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span><span style=\"color: #008000; text-decoration-color: #008000\">'acc#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.37</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'total#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">100.0</span>, <span style=\"color: #008000; text-decoration-color: #008000\">'correct#acc'</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">37.0</span><span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.41\u001b[0m, \u001b[32m'total#acc'\u001b[0m: \u001b[1;36m100.0\u001b[0m, \u001b[32m'correct#acc'\u001b[0m: \u001b[1;36m41.0\u001b[0m\u001b[1m}\u001b[0m\n" | |||
| "\u001b[1m{\u001b[0m\u001b[32m'acc#acc'\u001b[0m: \u001b[1;36m0.37\u001b[0m, \u001b[32m'total#acc'\u001b[0m: \u001b[1;36m100.0\u001b[0m, \u001b[32m'correct#acc'\u001b[0m: \u001b[1;36m37.0\u001b[0m\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| @@ -626,7 +629,7 @@ | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "{'acc#acc': 0.41, 'total#acc': 100.0, 'correct#acc': 41.0}" | |||
| "{'acc#acc': 0.37, 'total#acc': 100.0, 'correct#acc': 37.0}" | |||
| ] | |||
| }, | |||
| "execution_count": 9, | |||
| @@ -756,7 +759,7 @@ | |||
| { | |||
| "data": { | |||
| "text/plain": [ | |||
| "{'acc#acc': 0.46, 'total#acc': 100.0, 'correct#acc': 46.0}" | |||
| "{'acc#acc': 0.47, 'total#acc': 100.0, 'correct#acc': 47.0}" | |||
| ] | |||
| }, | |||
| "execution_count": 12, | |||
| @@ -793,7 +796,7 @@ | |||
| "name": "python", | |||
| "nbconvert_exporter": "python", | |||
| "pygments_lexer": "ipython3", | |||
| "version": "3.7.4" | |||
| "version": "3.7.13" | |||
| }, | |||
| "pycharm": { | |||
| "stem_cell": { | |||
| @@ -0,0 +1,888 @@ | |||
| { | |||
| "cells": [ | |||
| { | |||
| "cell_type": "markdown", | |||
| "metadata": {}, | |||
| "source": [ | |||
| "# E1. 使用 DistilBert 完成 SST2 分类" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 1, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "4.18.0\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "import torch\n", | |||
| "import torch.nn as nn\n", | |||
| "from torch.optim import AdamW\n", | |||
| "from torch.utils.data import DataLoader, Dataset\n", | |||
| "\n", | |||
| "import transformers\n", | |||
| "from transformers import AutoTokenizer\n", | |||
| "from transformers import AutoModelForSequenceClassification\n", | |||
| "\n", | |||
| "import sys\n", | |||
| "sys.path.append('..')\n", | |||
| "\n", | |||
| "import fastNLP\n", | |||
| "from fastNLP import Trainer\n", | |||
| "from fastNLP.core.utils.utils import dataclass_to_dict\n", | |||
| "from fastNLP.core.metrics import Accuracy\n", | |||
| "\n", | |||
| "print(transformers.__version__)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 2, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "GLUE_TASKS = [\"cola\", \"mnli\", \"mnli-mm\", \"mrpc\", \"qnli\", \"qqp\", \"rte\", \"sst2\", \"stsb\", \"wnli\"]\n", | |||
| "\n", | |||
| "task = \"sst2\"\n", | |||
| "model_checkpoint = \"distilbert-base-uncased\"" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 3, | |||
| "metadata": { | |||
| "scrolled": false | |||
| }, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Using the latest cached version of the module from /remote-home/xrliu/.cache/huggingface/modules/datasets_modules/datasets/glue/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad (last modified on Thu May 26 15:30:15 2022) since it couldn't be found locally at glue., or remotely on the Hugging Face Hub.\n", | |||
| "Reusing dataset glue (/remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "application/vnd.jupyter.widget-view+json": { | |||
| "model_id": "253d79d7a67e4dc88338448b5bcb3fb9", | |||
| "version_major": 2, | |||
| "version_minor": 0 | |||
| }, | |||
| "text/plain": [ | |||
| " 0%| | 0/3 [00:00<?, ?it/s]" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| } | |||
| ], | |||
| "source": [ | |||
| "from datasets import load_dataset, load_metric\n", | |||
| "\n", | |||
| "dataset = load_dataset(\"glue\", \"mnli\" if task == \"mnli-mm\" else task)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 4, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "{'input_ids': [101, 7592, 1010, 2023, 2028, 6251, 999, 102, 1998, 2023, 6251, 3632, 2007, 2009, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)\n", | |||
| "\n", | |||
| "print(tokenizer(\"Hello, this one sentence!\", \"And this sentence goes with it.\"))" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 5, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "task_to_keys = {\n", | |||
| " \"cola\": (\"sentence\", None),\n", | |||
| " \"mnli\": (\"premise\", \"hypothesis\"),\n", | |||
| " \"mnli-mm\": (\"premise\", \"hypothesis\"),\n", | |||
| " \"mrpc\": (\"sentence1\", \"sentence2\"),\n", | |||
| " \"qnli\": (\"question\", \"sentence\"),\n", | |||
| " \"qqp\": (\"question1\", \"question2\"),\n", | |||
| " \"rte\": (\"sentence1\", \"sentence2\"),\n", | |||
| " \"sst2\": (\"sentence\", None),\n", | |||
| " \"stsb\": (\"sentence1\", \"sentence2\"),\n", | |||
| " \"wnli\": (\"sentence1\", \"sentence2\"),\n", | |||
| "}\n", | |||
| "\n", | |||
| "sentence1_key, sentence2_key = task_to_keys[task]" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 6, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Sentence: hide new secretions from the parental units \n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "if sentence2_key is None:\n", | |||
| " print(f\"Sentence: {dataset['train'][0][sentence1_key]}\")\n", | |||
| "else:\n", | |||
| " print(f\"Sentence 1: {dataset['train'][0][sentence1_key]}\")\n", | |||
| " print(f\"Sentence 2: {dataset['train'][0][sentence2_key]}\")" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 7, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Loading cached processed dataset at /remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-ca1fbe5e8eb059f3.arrow\n", | |||
| "Loading cached processed dataset at /remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-03661263fbf302f5.arrow\n", | |||
| "Loading cached processed dataset at /remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-fbe8e7a4e4f18f45.arrow\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "def preprocess_function(examples):\n", | |||
| " if sentence2_key is None:\n", | |||
| " return tokenizer(examples[sentence1_key], truncation=True)\n", | |||
| " return tokenizer(examples[sentence1_key], examples[sentence2_key], truncation=True)\n", | |||
| "\n", | |||
| "encoded_dataset = dataset.map(preprocess_function, batched=True)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 8, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "class ClassModel(nn.Module):\n", | |||
| " def __init__(self, num_labels, model_checkpoint):\n", | |||
| " nn.Module.__init__(self)\n", | |||
| " self.num_labels = num_labels\n", | |||
| " self.back_bone = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, \n", | |||
| " num_labels=num_labels)\n", | |||
| " self.loss_fn = nn.CrossEntropyLoss()\n", | |||
| "\n", | |||
| " def forward(self, input_ids, attention_mask):\n", | |||
| " return self.back_bone(input_ids, attention_mask)\n", | |||
| "\n", | |||
| " def train_step(self, input_ids, attention_mask, labels):\n", | |||
| " pred = self(input_ids, attention_mask).logits\n", | |||
| " return {\"loss\": self.loss_fn(pred, labels)}\n", | |||
| "\n", | |||
| " def evaluate_step(self, input_ids, attention_mask, labels):\n", | |||
| " pred = self(input_ids, attention_mask).logits\n", | |||
| " pred = torch.max(pred, dim=-1)[1]\n", | |||
| " return {\"pred\": pred, \"target\": labels}" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 9, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_projector.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_transform.weight']\n", | |||
| "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", | |||
| "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", | |||
| "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", | |||
| "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "num_labels = 3 if task.startswith(\"mnli\") else 1 if task==\"stsb\" else 2\n", | |||
| "\n", | |||
| "model = ClassModel(num_labels=num_labels, model_checkpoint=model_checkpoint)\n", | |||
| "\n", | |||
| "optimizers = AdamW(params=model.parameters(), lr=5e-5)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 10, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "class TestDistilBertDataset(Dataset):\n", | |||
| " def __init__(self, dataset):\n", | |||
| " super(TestDistilBertDataset, self).__init__()\n", | |||
| " self.dataset = dataset\n", | |||
| "\n", | |||
| " def __len__(self):\n", | |||
| " return len(self.dataset)\n", | |||
| "\n", | |||
| " def __getitem__(self, item):\n", | |||
| " item = self.dataset[item]\n", | |||
| " return item[\"input_ids\"], item[\"attention_mask\"], [item[\"label\"]] " | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 11, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "def test_bert_collate_fn(batch):\n", | |||
| " input_ids, atten_mask, labels = [], [], []\n", | |||
| " max_length = [0] * 3\n", | |||
| " for each_item in batch:\n", | |||
| " input_ids.append(each_item[0])\n", | |||
| " max_length[0] = max(max_length[0], len(each_item[0]))\n", | |||
| " atten_mask.append(each_item[1])\n", | |||
| " max_length[1] = max(max_length[1], len(each_item[1]))\n", | |||
| " labels.append(each_item[2])\n", | |||
| " max_length[2] = max(max_length[2], len(each_item[2]))\n", | |||
| "\n", | |||
| " for i in range(3):\n", | |||
| " each = (input_ids, atten_mask, labels)[i]\n", | |||
| " for item in each:\n", | |||
| " item.extend([0] * (max_length[i] - len(item)))\n", | |||
| " return {\"input_ids\": torch.cat([torch.tensor([item]) for item in input_ids], dim=0),\n", | |||
| " \"attention_mask\": torch.cat([torch.tensor([item]) for item in atten_mask], dim=0),\n", | |||
| " \"labels\": torch.cat([torch.tensor(item) for item in labels], dim=0)}" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 12, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "dataset_train = TestDistilBertDataset(encoded_dataset[\"train\"])\n", | |||
| "dataloader_train = DataLoader(dataset=dataset_train, \n", | |||
| " batch_size=32, shuffle=True, collate_fn=test_bert_collate_fn)\n", | |||
| "dataset_valid = TestDistilBertDataset(encoded_dataset[\"validation\"])\n", | |||
| "dataloader_valid = DataLoader(dataset=dataset_valid, \n", | |||
| " batch_size=32, shuffle=False, collate_fn=test_bert_collate_fn)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 13, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "trainer = Trainer(\n", | |||
| " model=model,\n", | |||
| " driver='torch',\n", | |||
| " device='cuda',\n", | |||
| " n_epochs=10,\n", | |||
| " optimizers=optimizers,\n", | |||
| " train_dataloader=dataloader_train,\n", | |||
| " evaluate_dataloaders=dataloader_valid,\n", | |||
| " metrics={'acc': Accuracy()}\n", | |||
| ")" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 14, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "# help(model.back_bone.forward)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 15, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #7fbfbf; text-decoration-color: #7fbfbf\">[21:00:11] </span><span style=\"color: #000080; text-decoration-color: #000080\">INFO </span> Running evaluator sanity check for <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span> batches. <a href=\"file://../fastNLP/core/controllers/trainer.py\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">trainer.py</span></a><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">:</span><a href=\"file://../fastNLP/core/controllers/trainer.py#592\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">592</span></a>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[2;36m[21:00:11]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=22992;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669026;file://../fastNLP/core/controllers/trainer.py#592\u001b\\\u001b[2m592\u001b[0m\u001b]8;;\u001b\\\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "application/vnd.jupyter.widget-view+json": { | |||
| "model_id": "", | |||
| "version_major": 2, | |||
| "version_minor": 0 | |||
| }, | |||
| "text/plain": [ | |||
| "Output()" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.871875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">279.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.871875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m279.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.878125</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">281.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.878125\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m281.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.871875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">279.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.871875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m279.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.903125</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">289.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.903125\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m289.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.871875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">279.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.871875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m279.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">6</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.890625</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">285.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.890625\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m285.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">7</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">280.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m280.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.8875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">284.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m284.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">9</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.8875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">284.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m284.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">---------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">10</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.890625</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">285.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.890625\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m285.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n" | |||
| ], | |||
| "text/plain": [] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| } | |||
| ], | |||
| "source": [ | |||
| "trainer.run(num_eval_batch_per_dl=10)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [] | |||
| } | |||
| ], | |||
| "metadata": { | |||
| "kernelspec": { | |||
| "display_name": "Python 3 (ipykernel)", | |||
| "language": "python", | |||
| "name": "python3" | |||
| }, | |||
| "language_info": { | |||
| "codemirror_mode": { | |||
| "name": "ipython", | |||
| "version": 3 | |||
| }, | |||
| "file_extension": ".py", | |||
| "mimetype": "text/x-python", | |||
| "name": "python", | |||
| "nbconvert_exporter": "python", | |||
| "pygments_lexer": "ipython3", | |||
| "version": "3.7.13" | |||
| } | |||
| }, | |||
| "nbformat": 4, | |||
| "nbformat_minor": 1 | |||
| } | |||
| @@ -0,0 +1,888 @@ | |||
| { | |||
| "cells": [ | |||
| { | |||
| "cell_type": "markdown", | |||
| "metadata": {}, | |||
| "source": [ | |||
| "# E2. 使用 PrefixTuning 完成 SST2 分类" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 1, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "4.18.0\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "import torch\n", | |||
| "import torch.nn as nn\n", | |||
| "from torch.optim import AdamW\n", | |||
| "from torch.utils.data import DataLoader, Dataset\n", | |||
| "\n", | |||
| "import transformers\n", | |||
| "from transformers import AutoTokenizer\n", | |||
| "from transformers import AutoModelForSequenceClassification\n", | |||
| "\n", | |||
| "import sys\n", | |||
| "sys.path.append('..')\n", | |||
| "\n", | |||
| "import fastNLP\n", | |||
| "from fastNLP import Trainer\n", | |||
| "from fastNLP.core.utils.utils import dataclass_to_dict\n", | |||
| "from fastNLP.core.metrics import Accuracy\n", | |||
| "\n", | |||
| "print(transformers.__version__)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 2, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "GLUE_TASKS = [\"cola\", \"mnli\", \"mnli-mm\", \"mrpc\", \"qnli\", \"qqp\", \"rte\", \"sst2\", \"stsb\", \"wnli\"]\n", | |||
| "\n", | |||
| "task = \"sst2\"\n", | |||
| "model_checkpoint = \"distilbert-base-uncased\"" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 3, | |||
| "metadata": { | |||
| "scrolled": false | |||
| }, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Using the latest cached version of the module from /remote-home/xrliu/.cache/huggingface/modules/datasets_modules/datasets/glue/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad (last modified on Thu May 26 15:30:15 2022) since it couldn't be found locally at glue., or remotely on the Hugging Face Hub.\n", | |||
| "Reusing dataset glue (/remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n" | |||
| ] | |||
| }, | |||
| { | |||
| "data": { | |||
| "application/vnd.jupyter.widget-view+json": { | |||
| "model_id": "253d79d7a67e4dc88338448b5bcb3fb9", | |||
| "version_major": 2, | |||
| "version_minor": 0 | |||
| }, | |||
| "text/plain": [ | |||
| " 0%| | 0/3 [00:00<?, ?it/s]" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| } | |||
| ], | |||
| "source": [ | |||
| "from datasets import load_dataset, load_metric\n", | |||
| "\n", | |||
| "dataset = load_dataset(\"glue\", \"mnli\" if task == \"mnli-mm\" else task)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 4, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "{'input_ids': [101, 7592, 1010, 2023, 2028, 6251, 999, 102, 1998, 2023, 6251, 3632, 2007, 2009, 1012, 102], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, use_fast=True)\n", | |||
| "\n", | |||
| "print(tokenizer(\"Hello, this one sentence!\", \"And this sentence goes with it.\"))" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 5, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "task_to_keys = {\n", | |||
| " \"cola\": (\"sentence\", None),\n", | |||
| " \"mnli\": (\"premise\", \"hypothesis\"),\n", | |||
| " \"mnli-mm\": (\"premise\", \"hypothesis\"),\n", | |||
| " \"mrpc\": (\"sentence1\", \"sentence2\"),\n", | |||
| " \"qnli\": (\"question\", \"sentence\"),\n", | |||
| " \"qqp\": (\"question1\", \"question2\"),\n", | |||
| " \"rte\": (\"sentence1\", \"sentence2\"),\n", | |||
| " \"sst2\": (\"sentence\", None),\n", | |||
| " \"stsb\": (\"sentence1\", \"sentence2\"),\n", | |||
| " \"wnli\": (\"sentence1\", \"sentence2\"),\n", | |||
| "}\n", | |||
| "\n", | |||
| "sentence1_key, sentence2_key = task_to_keys[task]" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 6, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stdout", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Sentence: hide new secretions from the parental units \n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "if sentence2_key is None:\n", | |||
| " print(f\"Sentence: {dataset['train'][0][sentence1_key]}\")\n", | |||
| "else:\n", | |||
| " print(f\"Sentence 1: {dataset['train'][0][sentence1_key]}\")\n", | |||
| " print(f\"Sentence 2: {dataset['train'][0][sentence2_key]}\")" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 7, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Loading cached processed dataset at /remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-ca1fbe5e8eb059f3.arrow\n", | |||
| "Loading cached processed dataset at /remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-03661263fbf302f5.arrow\n", | |||
| "Loading cached processed dataset at /remote-home/xrliu/.cache/huggingface/datasets/glue/sst2/1.0.0/dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad/cache-fbe8e7a4e4f18f45.arrow\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "def preprocess_function(examples):\n", | |||
| " if sentence2_key is None:\n", | |||
| " return tokenizer(examples[sentence1_key], truncation=True)\n", | |||
| " return tokenizer(examples[sentence1_key], examples[sentence2_key], truncation=True)\n", | |||
| "\n", | |||
| "encoded_dataset = dataset.map(preprocess_function, batched=True)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 8, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "class ClassModel(nn.Module):\n", | |||
| " def __init__(self, num_labels, model_checkpoint):\n", | |||
| " nn.Module.__init__(self)\n", | |||
| " self.num_labels = num_labels\n", | |||
| " self.back_bone = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, \n", | |||
| " num_labels=num_labels)\n", | |||
| " self.loss_fn = nn.CrossEntropyLoss()\n", | |||
| "\n", | |||
| " def forward(self, input_ids, attention_mask):\n", | |||
| " return self.back_bone(input_ids, attention_mask)\n", | |||
| "\n", | |||
| " def train_step(self, input_ids, attention_mask, labels):\n", | |||
| " pred = self(input_ids, attention_mask).logits\n", | |||
| " return {\"loss\": self.loss_fn(pred, labels)}\n", | |||
| "\n", | |||
| " def evaluate_step(self, input_ids, attention_mask, labels):\n", | |||
| " pred = self(input_ids, attention_mask).logits\n", | |||
| " pred = torch.max(pred, dim=-1)[1]\n", | |||
| " return {\"pred\": pred, \"target\": labels}" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 9, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "name": "stderr", | |||
| "output_type": "stream", | |||
| "text": [ | |||
| "Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_projector.weight', 'vocab_layer_norm.bias', 'vocab_transform.bias', 'vocab_projector.bias', 'vocab_layer_norm.weight', 'vocab_transform.weight']\n", | |||
| "- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", | |||
| "- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", | |||
| "Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.weight', 'classifier.weight', 'classifier.bias', 'pre_classifier.bias']\n", | |||
| "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" | |||
| ] | |||
| } | |||
| ], | |||
| "source": [ | |||
| "num_labels = 3 if task.startswith(\"mnli\") else 1 if task==\"stsb\" else 2\n", | |||
| "\n", | |||
| "model = ClassModel(num_labels=num_labels, model_checkpoint=model_checkpoint)\n", | |||
| "\n", | |||
| "optimizers = AdamW(params=model.parameters(), lr=5e-5)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 10, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "class TestDistilBertDataset(Dataset):\n", | |||
| " def __init__(self, dataset):\n", | |||
| " super(TestDistilBertDataset, self).__init__()\n", | |||
| " self.dataset = dataset\n", | |||
| "\n", | |||
| " def __len__(self):\n", | |||
| " return len(self.dataset)\n", | |||
| "\n", | |||
| " def __getitem__(self, item):\n", | |||
| " item = self.dataset[item]\n", | |||
| " return item[\"input_ids\"], item[\"attention_mask\"], [item[\"label\"]] " | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 11, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "def test_bert_collate_fn(batch):\n", | |||
| " input_ids, atten_mask, labels = [], [], []\n", | |||
| " max_length = [0] * 3\n", | |||
| " for each_item in batch:\n", | |||
| " input_ids.append(each_item[0])\n", | |||
| " max_length[0] = max(max_length[0], len(each_item[0]))\n", | |||
| " atten_mask.append(each_item[1])\n", | |||
| " max_length[1] = max(max_length[1], len(each_item[1]))\n", | |||
| " labels.append(each_item[2])\n", | |||
| " max_length[2] = max(max_length[2], len(each_item[2]))\n", | |||
| "\n", | |||
| " for i in range(3):\n", | |||
| " each = (input_ids, atten_mask, labels)[i]\n", | |||
| " for item in each:\n", | |||
| " item.extend([0] * (max_length[i] - len(item)))\n", | |||
| " return {\"input_ids\": torch.cat([torch.tensor([item]) for item in input_ids], dim=0),\n", | |||
| " \"attention_mask\": torch.cat([torch.tensor([item]) for item in atten_mask], dim=0),\n", | |||
| " \"labels\": torch.cat([torch.tensor(item) for item in labels], dim=0)}" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 12, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "dataset_train = TestDistilBertDataset(encoded_dataset[\"train\"])\n", | |||
| "dataloader_train = DataLoader(dataset=dataset_train, \n", | |||
| " batch_size=32, shuffle=True, collate_fn=test_bert_collate_fn)\n", | |||
| "dataset_valid = TestDistilBertDataset(encoded_dataset[\"validation\"])\n", | |||
| "dataloader_valid = DataLoader(dataset=dataset_valid, \n", | |||
| " batch_size=32, shuffle=False, collate_fn=test_bert_collate_fn)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 13, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "trainer = Trainer(\n", | |||
| " model=model,\n", | |||
| " driver='torch',\n", | |||
| " device='cuda',\n", | |||
| " n_epochs=10,\n", | |||
| " optimizers=optimizers,\n", | |||
| " train_dataloader=dataloader_train,\n", | |||
| " evaluate_dataloaders=dataloader_valid,\n", | |||
| " metrics={'acc': Accuracy()}\n", | |||
| ")" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 14, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [ | |||
| "# help(model.back_bone.forward)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": 15, | |||
| "metadata": {}, | |||
| "outputs": [ | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #7fbfbf; text-decoration-color: #7fbfbf\">[21:00:11] </span><span style=\"color: #000080; text-decoration-color: #000080\">INFO </span> Running evaluator sanity check for <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span> batches. <a href=\"file://../fastNLP/core/controllers/trainer.py\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">trainer.py</span></a><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">:</span><a href=\"file://../fastNLP/core/controllers/trainer.py#592\"><span style=\"color: #7f7f7f; text-decoration-color: #7f7f7f\">592</span></a>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[2;36m[21:00:11]\u001b[0m\u001b[2;36m \u001b[0m\u001b[34mINFO \u001b[0m Running evaluator sanity check for \u001b[1;36m2\u001b[0m batches. \u001b]8;id=22992;file://../fastNLP/core/controllers/trainer.py\u001b\\\u001b[2mtrainer.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=669026;file://../fastNLP/core/controllers/trainer.py#592\u001b\\\u001b[2m592\u001b[0m\u001b]8;;\u001b\\\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "application/vnd.jupyter.widget-view+json": { | |||
| "model_id": "", | |||
| "version_major": 2, | |||
| "version_minor": 0 | |||
| }, | |||
| "text/plain": [ | |||
| "Output()" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">1</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m1\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.871875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">279.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.871875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m279.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">2</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m2\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.878125</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">281.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.878125\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m281.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">3</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m3\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.871875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">279.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.871875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m279.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">4</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m4\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.903125</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">289.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.903125\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m289.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">5</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m5\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.871875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">279.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.871875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m279.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">6</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m6\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.890625</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">285.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.890625\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m285.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">7</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m7\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">280.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m280.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">8</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m8\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.8875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">284.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m284.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">----------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">9</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "----------------------------- Eval. results on Epoch:\u001b[1;36m9\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.8875</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">284.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.8875\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m284.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">---------------------------- Eval. results on Epoch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">10</span>, Batch:<span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0</span> -----------------------------\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "---------------------------- Eval. results on Epoch:\u001b[1;36m10\u001b[0m, Batch:\u001b[1;36m0\u001b[0m -----------------------------\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">{</span>\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"acc#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">0.890625</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"total#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">320.0</span>,\n", | |||
| " <span style=\"color: #000080; text-decoration-color: #000080; font-weight: bold\">\"correct#acc\"</span>: <span style=\"color: #008080; text-decoration-color: #008080; font-weight: bold\">285.0</span>\n", | |||
| "<span style=\"font-weight: bold\">}</span>\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\u001b[1m{\u001b[0m\n", | |||
| " \u001b[1;34m\"acc#acc\"\u001b[0m: \u001b[1;36m0.890625\u001b[0m,\n", | |||
| " \u001b[1;34m\"total#acc\"\u001b[0m: \u001b[1;36m320.0\u001b[0m,\n", | |||
| " \u001b[1;34m\"correct#acc\"\u001b[0m: \u001b[1;36m285.0\u001b[0m\n", | |||
| "\u001b[1m}\u001b[0m\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"></pre>\n" | |||
| ], | |||
| "text/plain": [] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| }, | |||
| { | |||
| "data": { | |||
| "text/html": [ | |||
| "<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">\n", | |||
| "</pre>\n" | |||
| ], | |||
| "text/plain": [ | |||
| "\n" | |||
| ] | |||
| }, | |||
| "metadata": {}, | |||
| "output_type": "display_data" | |||
| } | |||
| ], | |||
| "source": [ | |||
| "trainer.run(num_eval_batch_per_dl=10)" | |||
| ] | |||
| }, | |||
| { | |||
| "cell_type": "code", | |||
| "execution_count": null, | |||
| "metadata": {}, | |||
| "outputs": [], | |||
| "source": [] | |||
| } | |||
| ], | |||
| "metadata": { | |||
| "kernelspec": { | |||
| "display_name": "Python 3 (ipykernel)", | |||
| "language": "python", | |||
| "name": "python3" | |||
| }, | |||
| "language_info": { | |||
| "codemirror_mode": { | |||
| "name": "ipython", | |||
| "version": 3 | |||
| }, | |||
| "file_extension": ".py", | |||
| "mimetype": "text/x-python", | |||
| "name": "python", | |||
| "nbconvert_exporter": "python", | |||
| "pygments_lexer": "ipython3", | |||
| "version": "3.7.13" | |||
| } | |||
| }, | |||
| "nbformat": 4, | |||
| "nbformat_minor": 1 | |||
| } | |||