| @@ -79,7 +79,7 @@ class RichCallback(ProgressCallback): | |||
| def on_train_begin(self, trainer): | |||
| self.task2id['epoch'] = self.progress_bar.add_task(description='Epoch:0', total=trainer.n_epochs, | |||
| completed=trainer.global_forward_batches/(trainer.total_batches+1e-6)) | |||
| completed=trainer.global_forward_batches/(trainer.n_batches+1e-6)) | |||
| def on_train_epoch_begin(self, trainer): | |||
| self.epoch_bar_update_advance = self.print_every/(trainer.num_batches_per_epoch + 1e-6) | |||
| @@ -190,7 +190,7 @@ class RawTextCallback(ProgressCallback): | |||
| self.loss = 0 | |||
| text = f'Epoch:{trainer.cur_epoch_idx}/{trainer.n_epochs}, Batch:{trainer.batch_idx_in_epoch}, ' \ | |||
| f'loss:{round(loss, self.loss_round_ndigit)}, ' \ | |||
| f'finished {round(trainer.global_forward_batches/trainer.total_batches*100, 2)}%.' | |||
| f'finished {round(trainer.global_forward_batches/trainer.n_batches*100, 2)}%.' | |||
| logger.info(text) | |||
| def on_evaluate_end(self, trainer, results): | |||
| @@ -251,7 +251,7 @@ class TqdmCallback(ProgressCallback): | |||
| def on_train_begin(self, trainer): | |||
| self.task2id['epoch'] = self.progress_bar.add_task(description='Epoch:0', total=trainer.n_epochs, | |||
| bar_format='{desc}: {percentage:3.0f}%|{bar}| [{elapsed}<{remaining}, {rate_fmt}, {postfix}]', | |||
| initial=trainer.global_forward_batches/(trainer.total_batches+1e-6)) | |||
| initial=trainer.global_forward_batches/(trainer.n_batches+1e-6)) | |||
| def on_train_epoch_begin(self, trainer): | |||
| self.epoch_bar_update_advance = self.print_every/(trainer.num_batches_per_epoch + 1e-6) | |||
| @@ -41,7 +41,7 @@ class TorchWarmupCallback(Callback): | |||
| return max((progress - 1.) / (self.warmup - 1.), 0.) | |||
| def on_train_begin(self, trainer): | |||
| self.t_steps = trainer.total_batches | |||
| self.t_steps = trainer.n_batches | |||
| if self.warmup >1: | |||
| self.warmup = self.warmup / self.t_steps | |||
| self.t_steps = max(2, self.t_steps) # 不能小于2 | |||
| @@ -460,14 +460,15 @@ class _MetricsWrapper: | |||
| for metric in self._metrics: | |||
| args = [] | |||
| if not isinstance(batch, dict): | |||
| logger.warning_once( | |||
| logger.rank_zero_warning( | |||
| f"The output of the DataLoader is of type:`{type(batch)}`, fastNLP will only depend on " | |||
| f"the output of model to update metric.") | |||
| f"the output of model to update metric.", once=True) | |||
| else: | |||
| args.append(batch) | |||
| if not isinstance(outputs, dict): | |||
| raise RuntimeError(f"The output of your model is of type:`{type(outputs)}`, please either directly" | |||
| f" return a dict from your model or use `output_mapping` to convert it into dict type.") | |||
| f" return a dict from your model or use `output_mapping` to convert it into dict " | |||
| f"type.") | |||
| if isinstance(metric, Metric): | |||
| # 这样在 auto_param_call 报错的时候才清晰。 | |||
| auto_param_call(metric.update, outputs, *args, signature_fn=metric.update.__wrapped__) | |||
| @@ -110,7 +110,7 @@ class Trainer(TrainerEventTrigger): | |||
| 对于使用 ``TorchDDPDriver`` 的更多细节,请见 :class:`~fastNLP.core.drivers.torch_driver.TorchDDPDriver`。 | |||
| :param n_epochs: 训练总共的 epoch 的数量,默认为 20; | |||
| :param n_epochs: 训练总共的 epoch 的数量,默认为 20;也可以通过 ``n_batches`` 参数设置总共迭代多少个 ``batch`` 。 | |||
| :param evaluate_dataloaders: 验证数据集,其可以是单独的一个数据集,也可以是多个数据集;当为多个数据集时,注意其必须是 Dict;默认 | |||
| 为 None; | |||
| :param batch_step_fn: 定制每次训练时前向运行一个 batch 的数据所执行的函数。该函数应接受两个参数为 ``trainer`` 和 ``batch``, | |||
| @@ -237,6 +237,8 @@ class Trainer(TrainerEventTrigger): | |||
| 注意该参数仅当 ``Trainer`` 内置的 ``Evaluator`` 不为 None 时且有需要该参数但是没有设置该参数的 *callback* 实例才有效; | |||
| :param n_batches: 迭代多少个 ``batch`` 的训练结束。当该值不为 -1 时,将直接忽略 ``n_epochs`` 的值。 | |||
| :param marker: 用于标记一个 ``Trainer`` 实例,从而在用户调用 ``Trainer.on`` 函数时,标记该函数属于哪一个具体的 ``Trainer`` 实例;默认为 None; | |||
| .. note:: | |||
| @@ -356,6 +358,7 @@ class Trainer(TrainerEventTrigger): | |||
| fp16: bool = False, | |||
| monitor: Union[str, Callable] = None, | |||
| larger_better: bool = True, | |||
| n_batches: int = -1, | |||
| marker: Optional[str] = None, | |||
| **kwargs | |||
| ): | |||
| @@ -426,6 +429,7 @@ class Trainer(TrainerEventTrigger): | |||
| model_wo_auto_param_call=model_wo_auto_param_call, | |||
| accumulation_steps=accumulation_steps, | |||
| fp16=fp16, | |||
| n_batches=n_batches, | |||
| marker=marker, | |||
| **kwargs | |||
| ) | |||
| @@ -444,12 +448,12 @@ class Trainer(TrainerEventTrigger): | |||
| # 初始化 state,包括提供给用户的接口和我们自己使用的接口; | |||
| self.state = State() | |||
| self.trainer_state = TrainerState( | |||
| n_epochs=n_epochs, | |||
| n_epochs=n_epochs if n_batches!=-1 else None, | |||
| cur_epoch_idx=0, | |||
| global_forward_batches=0, | |||
| batch_idx_in_epoch=0, | |||
| num_batches_per_epoch=None, # 会在具体的 train_batch_loop 中进行初始化; | |||
| total_batches=None | |||
| n_batches=n_batches | |||
| ) | |||
| if metrics is None and evaluate_dataloaders is not None: | |||
| @@ -598,14 +602,18 @@ class Trainer(TrainerEventTrigger): | |||
| self.dataloader = _TruncatedDataLoader(self.dataloader, num_train_batch_per_epoch) | |||
| self.num_batches_per_epoch = len(self.dataloader) | |||
| self.total_batches = self.num_batches_per_epoch * self.n_epochs | |||
| if self.n_batches == -1: | |||
| self.n_batches = self.num_batches_per_epoch * self.n_epochs | |||
| else: | |||
| self.n_epochs = (self.n_batches+self.num_batches_per_epoch-1)//self.num_batches_per_epoch | |||
| self.global_forward_batches = self.num_batches_per_epoch * self.cur_epoch_idx + self.batch_idx_in_epoch | |||
| try: | |||
| self.on_train_begin() | |||
| self.driver.barrier() | |||
| self.driver.zero_grad() | |||
| while self.cur_epoch_idx < self.n_epochs: | |||
| while self.cur_epoch_idx < self.n_epochs and self.global_forward_batches < self.n_batches: | |||
| # 这个是防止在 Trainer.load_checkpoint 之后还没结束当前 epoch 又继续 save | |||
| self.start_batch_idx_in_epoch = self.trainer_state.batch_idx_in_epoch | |||
| self.driver.set_model_mode("train") | |||
| @@ -1367,15 +1375,15 @@ class Trainer(TrainerEventTrigger): | |||
| self.trainer_state.num_batches_per_epoch = num_batches_per_epoch | |||
| @property | |||
| def total_batches(self) -> int: | |||
| def n_batches(self) -> int: | |||
| r""" | |||
| :return: 返回整体的训练中实际会训练多少个 batch 的数据; | |||
| """ | |||
| return self.trainer_state.total_batches | |||
| return self.trainer_state.n_batches | |||
| @total_batches.setter | |||
| def total_batches(self, total_batches: int): | |||
| self.trainer_state.total_batches = total_batches | |||
| @n_batches.setter | |||
| def n_batches(self, n_batches: int): | |||
| self.trainer_state.n_batches = n_batches | |||
| """ driver property """ | |||
| @@ -50,7 +50,7 @@ class TrainerState: | |||
| :param global_forward_batches: 当前模型总共 forward 了多少个 step; | |||
| :param batch_idx_in_epoch: 训练中在当前 epoch 的第几个 step; | |||
| :param num_batches_per_epoch: 每一个 epoch 会 forward 多少个 step; | |||
| :param total_batches: 完整训练过程会 forward 的 step 数量,注意 total_batches = total_batches * n_epochs; | |||
| :param n_batches: 完整训练过程会 forward 的 step 数量,注意 n_batches = n_batches * n_epochs; | |||
| """ | |||
| n_epochs: Optional[int] = None # 无论如何重新算 | |||
| @@ -61,7 +61,7 @@ class TrainerState: | |||
| num_batches_per_epoch: Optional[int] = None # 无论如何重新算 | |||
| total_batches: Optional[int] = None # 无论如何重新算 | |||
| n_batches: Optional[int] = None # 无论如何重新算 | |||
| def state_dict(self) -> Dict: | |||
| r""" | |||
| @@ -156,7 +156,6 @@ import _pickle as pickle | |||
| from copy import deepcopy | |||
| from typing import Optional, List, Callable, Union, Dict, Any, Mapping | |||
| from types import LambdaType | |||
| from subprocess import DEVNULL | |||
| import sys | |||
| import time | |||
| @@ -170,6 +169,7 @@ from fastNLP.core.utils.rich_progress import f_rich_progress, DummyFRichProgress | |||
| from fastNLP.core.utils.tqdm_progress import f_tqdm_progress | |||
| from ..log import logger | |||
| from fastNLP.core.utils.dummy_class import DummyClass | |||
| from ..utils.utils import _get_fun_msg | |||
| progress_bars = { | |||
| @@ -780,8 +780,8 @@ class DataSet: | |||
| apply_out = self._apply_process(num_proc, func, progress_desc=progress_desc, | |||
| progress_bar=progress_bar) | |||
| # 只检测第一个数据是否为dict类型,若是则默认所有返回值为dict;否则报错。 | |||
| if not isinstance(apply_out[0], dict): | |||
| raise Exception("The result of func is not a dict") | |||
| if not isinstance(apply_out[0], Mapping): | |||
| raise Exception(f"The result of func:{_get_fun_msg(func)} is not a dict, but of type {type(apply_out[0])}") | |||
| for key, value in apply_out[0].items(): | |||
| results[key] = [value] | |||
| @@ -789,7 +789,8 @@ class DataSet: | |||
| try: | |||
| for idx, per_out in enumerate(apply_out[1:]): | |||
| if len(set(results.keys()) - set(per_out.keys())): | |||
| raise ApplyResultException("apply results have different fields", idx + 1) | |||
| raise ApplyResultException(f"Apply results have different fields:{set(results.keys())} and " | |||
| f"{set(per_out.keys())}", idx + 1) | |||
| for key, value in per_out.items(): | |||
| results[key].append(value) | |||
| @@ -169,7 +169,7 @@ class RandomBatchSampler(ReproducibleBatchSampler): | |||
| :param kwargs: fastNLP 保留使用 | |||
| """ | |||
| def __init__(self, dataset, batch_size:int = 32, shuffle: bool = True, | |||
| drop_last: bool = False, seed: int = 0, **kwargs): | |||
| drop_last: bool = False, seed: int = None, **kwargs): | |||
| super().__init__() | |||
| self.dataset = dataset | |||
| @@ -120,7 +120,7 @@ class FRichProgress(Progress, metaclass=Singleton): | |||
| def add_task( | |||
| self, | |||
| description: str, | |||
| description: str = 'Progress', | |||
| start: bool = True, | |||
| total: float = 100.0, | |||
| completed: int = 0, | |||
| @@ -7,7 +7,7 @@ __all__ = [] | |||
| import json | |||
| import csv | |||
| # from ..core import log | |||
| from ..core import logger | |||
| def _read_csv(path, encoding='utf-8', headers=None, sep=',', dropna=True): | |||
| @@ -81,7 +81,7 @@ def _read_json(path, encoding='utf-8', fields=None, dropna=True): | |||
| yield line_idx, _res | |||
| def _read_conll(path, encoding='utf-8',sep=None, indexes=None, dropna=True): | |||
| def _read_conll(path, encoding='utf-8',sep=None, indexes=None, dropna=True, drophash=True): | |||
| r""" | |||
| Construct a generator to read conll items. | |||
| @@ -91,6 +91,7 @@ def _read_conll(path, encoding='utf-8',sep=None, indexes=None, dropna=True): | |||
| :param indexes: conll object's column indexes that needed, if None, all columns are needed. default: None | |||
| :param dropna: weather to ignore and drop invalid data, | |||
| :if False, raise ValueError when reading invalid data. default: True | |||
| :param drophash: 是否丢掉以 # 开头的 line 。 | |||
| :return: generator, every time yield (line number, conll item) | |||
| """ | |||
| @@ -121,7 +122,7 @@ def _read_conll(path, encoding='utf-8',sep=None, indexes=None, dropna=True): | |||
| sample = [] | |||
| continue | |||
| raise ValueError('Invalid instance which ends at line: {}'.format(line_idx)) | |||
| elif line.startswith('#'): | |||
| elif line.startswith('#') and drophash: | |||
| continue | |||
| else: | |||
| sample.append(line.split(sep)) if sep else sample.append(line.split()) | |||
| @@ -52,13 +52,14 @@ class ConllLoader(Loader): | |||
| """ | |||
| def __init__(self, headers, sep=None, indexes=None, dropna=True): | |||
| def __init__(self, headers, sep=None, indexes=None, dropna=True, drophash=True): | |||
| r""" | |||
| :param list headers: 每一列数据的名称,需为List or Tuple of str。``header`` 与 ``indexes`` 一一对应 | |||
| :param list sep: 指定分隔符,默认为制表符 | |||
| :param list indexes: 需要保留的数据列下标,从0开始。若为 ``None`` ,则所有列都保留。Default: ``None`` | |||
| :param bool dropna: 是否忽略非法数据,若 ``False`` ,遇到非法数据时抛出 ``ValueError`` 。Default: ``True`` | |||
| :param bool drophashtag: 是否忽略以 ``#`` 开头的句子。 | |||
| """ | |||
| super(ConllLoader, self).__init__() | |||
| if not isinstance(headers, (list, tuple)): | |||
| @@ -66,6 +67,7 @@ class ConllLoader(Loader): | |||
| 'invalid headers: {}, should be list of strings'.format(headers)) | |||
| self.headers = headers | |||
| self.dropna = dropna | |||
| self.drophash = drophash | |||
| self.sep=sep | |||
| if indexes is None: | |||
| self.indexes = list(range(len(self.headers))) | |||
| @@ -82,7 +84,8 @@ class ConllLoader(Loader): | |||
| :return: DataSet | |||
| """ | |||
| ds = DataSet() | |||
| for idx, data in _read_conll(path,sep=self.sep, indexes=self.indexes, dropna=self.dropna): | |||
| for idx, data in _read_conll(path,sep=self.sep, indexes=self.indexes, dropna=self.dropna, | |||
| drophash=self.drophash): | |||
| ins = {h: data[i] for i, h in enumerate(self.headers)} | |||
| ds.append(Instance(**ins)) | |||
| return ds | |||
| @@ -32,4 +32,4 @@ def test_torch_warmup_callback(warmup, schedule, accumulation_steps): | |||
| elif schedule == 'constant': | |||
| assert np.allclose(0.1, kwargs['optimizers'].param_groups[0]['lr']) | |||
| assert len(r_callback.lrs)<=trainer.total_batches//accumulation_steps+1 | |||
| assert len(r_callback.lrs)<=trainer.n_batches//accumulation_steps+1 | |||
| @@ -55,4 +55,4 @@ class RecordAccumulationStepsCallback_Torch(Callback): | |||
| def on_train_end(self, trainer): | |||
| print(f"\n equal num: {self.equal}.\n") | |||
| print(f"\ntotal_batch_num: {trainer.total_batches}.\n") | |||
| print(f"\ntotal_batch_num: {trainer.n_batches}.\n") | |||