You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_POS_pipeline.py 3.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. import sys
  2. sys.path.append("..")
  3. from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
  4. from fastNLP.action.trainer import POSTrainer
  5. from fastNLP.loader.dataset_loader import POSDatasetLoader, BaseLoader
  6. from fastNLP.loader.preprocess import POSPreprocess, load_pickle
  7. from fastNLP.saver.model_saver import ModelSaver
  8. from fastNLP.loader.model_loader import ModelLoader
  9. from fastNLP.action.tester import POSTester
  10. from fastNLP.models.sequence_modeling import SeqLabeling
  11. from fastNLP.action.inference import Inference
  12. data_name = "people.txt"
  13. data_path = "data_for_tests/people.txt"
  14. pickle_path = "data_for_tests"
  15. data_infer_path = "data_for_tests/people_infer.txt"
  16. def infer():
  17. # Load infer configuration, the same as test
  18. test_args = ConfigSection()
  19. ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
  20. # fetch dictinary size and number of labels from pickle files
  21. word2index = load_pickle(pickle_path, "word2id.pkl")
  22. test_args["vocab_size"] = len(word2index)
  23. index2label = load_pickle(pickle_path, "id2class.pkl")
  24. test_args["num_classes"] = len(index2label)
  25. # Define the same model
  26. model = SeqLabeling(test_args)
  27. # Dump trained parameters into the model
  28. ModelLoader.load_pytorch(model, "./saved_model.pkl")
  29. print("model loaded!")
  30. # Data Loader
  31. raw_data_loader = BaseLoader(data_name, data_infer_path)
  32. infer_data = raw_data_loader.load_lines()
  33. """
  34. Transform strings into list of list of strings.
  35. [
  36. [word_11, word_12, ...],
  37. [word_21, word_22, ...],
  38. ...
  39. ]
  40. In this case, each line in "people_infer.txt" is already a sentence. So load_lines() just splits them.
  41. """
  42. # Inference interface
  43. infer = Inference(pickle_path)
  44. results = infer.predict(model, infer_data)
  45. print(results)
  46. print("Inference finished!")
  47. def train_test():
  48. # Config Loader
  49. train_args = ConfigSection()
  50. ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS": train_args})
  51. # Data Loader
  52. pos_loader = POSDatasetLoader(data_name, data_path)
  53. train_data = pos_loader.load_lines()
  54. # Preprocessor
  55. p = POSPreprocess(train_data, pickle_path)
  56. train_args["vocab_size"] = p.vocab_size
  57. train_args["num_classes"] = p.num_classes
  58. # Trainer
  59. trainer = POSTrainer(train_args)
  60. # Model
  61. model = SeqLabeling(train_args)
  62. # Start training
  63. trainer.train(model)
  64. print("Training finished!")
  65. # Saver
  66. saver = ModelSaver("./saved_model.pkl")
  67. saver.save_pytorch(model)
  68. print("Model saved!")
  69. del model, trainer, pos_loader
  70. # Define the same model
  71. model = SeqLabeling(train_args)
  72. # Dump trained parameters into the model
  73. ModelLoader.load_pytorch(model, "./saved_model.pkl")
  74. print("model loaded!")
  75. # Load test configuration
  76. test_args = ConfigSection()
  77. ConfigLoader("config.cfg", "").load_config("./data_for_tests/config", {"POS_test": test_args})
  78. # Tester
  79. tester = POSTester(test_args)
  80. # Start testing
  81. tester.test(model)
  82. # print test results
  83. print(tester.show_matrices())
  84. print("model tested!")
  85. if __name__ == "__main__":
  86. infer()

一款轻量级的自然语言处理(NLP)工具包,目标是减少用户项目中的工程型代码,例如数据处理循环、训练循环、多卡运行等