You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run.py 4.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. import sys, os
  2. sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
  3. from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
  4. from fastNLP.core.trainer import SeqLabelTrainer
  5. from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader
  6. from fastNLP.loader.preprocess import POSPreprocess, load_pickle
  7. from fastNLP.saver.model_saver import ModelSaver
  8. from fastNLP.loader.model_loader import ModelLoader
  9. from fastNLP.core.tester import SeqLabelTester
  10. from fastNLP.models.sequence_modeling import AdvSeqLabel
  11. from fastNLP.core.inference import SeqLabelInfer
  12. from fastNLP.core.optimizer import SGD
  13. # not in the file's dir
  14. if len(os.path.dirname(__file__)) != 0:
  15. os.chdir(os.path.dirname(__file__))
  16. datadir = 'icwb2-data'
  17. cfgfile = 'cws.cfg'
  18. data_name = "pku_training.utf8"
  19. cws_data_path = os.path.join(datadir, "training/pku_training.utf8")
  20. pickle_path = "save"
  21. data_infer_path = os.path.join(datadir, "infer.utf8")
  22. def infer():
  23. # Config Loader
  24. test_args = ConfigSection()
  25. ConfigLoader("config", "").load_config(cfgfile, {"POS_test": test_args})
  26. # fetch dictionary size and number of labels from pickle files
  27. word2index = load_pickle(pickle_path, "word2id.pkl")
  28. test_args["vocab_size"] = len(word2index)
  29. index2label = load_pickle(pickle_path, "id2class.pkl")
  30. test_args["num_classes"] = len(index2label)
  31. # Define the same model
  32. model = AdvSeqLabel(test_args)
  33. try:
  34. ModelLoader.load_pytorch(model, "./save/saved_model.pkl")
  35. print('model loaded!')
  36. except Exception as e:
  37. print('cannot load model!')
  38. raise
  39. # Data Loader
  40. raw_data_loader = BaseLoader(data_name, data_infer_path)
  41. infer_data = raw_data_loader.load_lines()
  42. print('data loaded')
  43. # Inference interface
  44. infer = SeqLabelInfer(pickle_path)
  45. results = infer.predict(model, infer_data)
  46. print(results)
  47. print("Inference finished!")
  48. def train():
  49. # Config Loader
  50. train_args = ConfigSection()
  51. test_args = ConfigSection()
  52. ConfigLoader("good_name", "good_path").load_config(cfgfile, {"train": train_args, "test": test_args})
  53. # Data Loader
  54. loader = TokenizeDatasetLoader(data_name, cws_data_path)
  55. train_data = loader.load_pku()
  56. # Preprocessor
  57. p = POSPreprocess(train_data, pickle_path, train_dev_split=0.3)
  58. train_args["vocab_size"] = p.vocab_size
  59. train_args["num_classes"] = p.num_classes
  60. # Trainer
  61. trainer = SeqLabelTrainer(train_args)
  62. # Model
  63. model = AdvSeqLabel(train_args)
  64. try:
  65. ModelLoader.load_pytorch(model, "./save/saved_model.pkl")
  66. print('model parameter loaded!')
  67. except Exception as e:
  68. pass
  69. # Start training
  70. trainer.train(model)
  71. print("Training finished!")
  72. # Saver
  73. saver = ModelSaver("./save/saved_model.pkl")
  74. saver.save_pytorch(model)
  75. print("Model saved!")
  76. def test():
  77. # Config Loader
  78. test_args = ConfigSection()
  79. ConfigLoader("config", "").load_config(cfgfile, {"POS_test": test_args})
  80. # fetch dictionary size and number of labels from pickle files
  81. word2index = load_pickle(pickle_path, "word2id.pkl")
  82. test_args["vocab_size"] = len(word2index)
  83. index2label = load_pickle(pickle_path, "id2class.pkl")
  84. test_args["num_classes"] = len(index2label)
  85. # Define the same model
  86. model = AdvSeqLabel(test_args)
  87. # Dump trained parameters into the model
  88. ModelLoader.load_pytorch(model, "./save/saved_model.pkl")
  89. print("model loaded!")
  90. # Tester
  91. tester = SeqLabelTester(test_args)
  92. # Start testing
  93. tester.test(model)
  94. # print test results
  95. print(tester.show_matrices())
  96. print("model tested!")
  97. if __name__ == "__main__":
  98. import argparse
  99. parser = argparse.ArgumentParser(description='Run a chinese word segmentation model')
  100. parser.add_argument('--mode', help='set the model\'s model', choices=['train', 'test', 'infer'])
  101. args = parser.parse_args()
  102. if args.mode == 'train':
  103. train()
  104. elif args.mode == 'test':
  105. test()
  106. elif args.mode == 'infer':
  107. infer()
  108. else:
  109. print('no mode specified for model!')
  110. parser.print_help()

一款轻量级的自然语言处理(NLP)工具包,目标是减少用户项目中的工程型代码,例如数据处理循环、训练循环、多卡运行等