You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_bert_embedding.py 5.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. import unittest
  2. from fastNLP import Vocabulary
  3. from fastNLP.embeddings import BertEmbedding, BertWordPieceEncoder
  4. import torch
  5. import os
  6. from fastNLP import DataSet
  7. @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis")
  8. class TestDownload(unittest.TestCase):
  9. def test_download(self):
  10. # import os
  11. vocab = Vocabulary().add_word_lst("This is a test .".split())
  12. embed = BertEmbedding(vocab, model_dir_or_name='en')
  13. words = torch.LongTensor([[2, 3, 4, 0]])
  14. print(embed(words).size())
  15. for pool_method in ['first', 'last', 'max', 'avg']:
  16. for include_cls_sep in [True, False]:
  17. embed = BertEmbedding(vocab, model_dir_or_name='en', pool_method=pool_method,
  18. include_cls_sep=include_cls_sep)
  19. print(embed(words).size())
  20. def test_word_drop(self):
  21. vocab = Vocabulary().add_word_lst("This is a test .".split())
  22. embed = BertEmbedding(vocab, model_dir_or_name='en', dropout=0.1, word_dropout=0.2)
  23. for i in range(10):
  24. words = torch.LongTensor([[2, 3, 4, 0]])
  25. print(embed(words).size())
  26. class TestBertEmbedding(unittest.TestCase):
  27. def test_bert_embedding_1(self):
  28. vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInBERT".split())
  29. embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1)
  30. requires_grad = embed.requires_grad
  31. embed.requires_grad = not requires_grad
  32. embed.train()
  33. words = torch.LongTensor([[2, 3, 4, 0]])
  34. result = embed(words)
  35. self.assertEqual(result.size(), (1, 4, 16))
  36. embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1)
  37. embed.eval()
  38. words = torch.LongTensor([[2, 3, 4, 0]])
  39. result = embed(words)
  40. self.assertEqual(result.size(), (1, 4, 16))
  41. # 自动截断而不报错
  42. embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1,
  43. auto_truncate=True)
  44. words = torch.LongTensor([[2, 3, 4, 1]*10,
  45. [2, 3]+[0]*38])
  46. result = embed(words)
  47. self.assertEqual(result.size(), (2, 40, 16))
  48. def test_save_load(self):
  49. bert_save_test = 'bert_save_test'
  50. try:
  51. os.makedirs(bert_save_test, exist_ok=True)
  52. vocab = Vocabulary().add_word_lst("this is a test . [SEP] NotInBERT".split())
  53. embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1,
  54. auto_truncate=True)
  55. embed.save(bert_save_test)
  56. load_embed = BertEmbedding.load(bert_save_test)
  57. words = torch.randint(len(vocab), size=(2, 20))
  58. embed.eval(), load_embed.eval()
  59. self.assertEqual((embed(words) - load_embed(words)).sum(), 0)
  60. finally:
  61. import shutil
  62. shutil.rmtree(bert_save_test)
  63. class TestBertWordPieceEncoder(unittest.TestCase):
  64. def test_bert_word_piece_encoder(self):
  65. embed = BertWordPieceEncoder(model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.1)
  66. ds = DataSet({'words': ["this is a test . [SEP]".split()]})
  67. embed.index_datasets(ds, field_name='words')
  68. self.assertTrue(ds.has_field('word_pieces'))
  69. result = embed(torch.LongTensor([[1,2,3,4]]))
  70. def test_bert_embed_eq_bert_piece_encoder(self):
  71. ds = DataSet({'words': ["this is a texta model vocab".split(), 'this is'.split()]})
  72. encoder = BertWordPieceEncoder(model_dir_or_name='test/data_for_tests/embedding/small_bert')
  73. encoder.eval()
  74. encoder.index_datasets(ds, field_name='words')
  75. word_pieces = torch.LongTensor(ds['word_pieces'].get([0, 1]))
  76. word_pieces_res = encoder(word_pieces)
  77. vocab = Vocabulary()
  78. vocab.from_dataset(ds, field_name='words')
  79. vocab.index_dataset(ds, field_name='words', new_field_name='words')
  80. ds.set_input('words')
  81. words = torch.LongTensor(ds['words'].get([0, 1]))
  82. embed = BertEmbedding(vocab, model_dir_or_name='test/data_for_tests/embedding/small_bert',
  83. pool_method='first', include_cls_sep=True, pooled_cls=False, min_freq=1)
  84. embed.eval()
  85. words_res = embed(words)
  86. # 检查word piece什么的是正常work的
  87. self.assertEqual((word_pieces_res[0, :5]-words_res[0, :5]).sum(), 0)
  88. self.assertEqual((word_pieces_res[0, 6:]-words_res[0, 5:]).sum(), 0)
  89. self.assertEqual((word_pieces_res[1, :3]-words_res[1, :3]).sum(), 0)
  90. def test_save_load(self):
  91. bert_save_test = 'bert_save_test'
  92. try:
  93. os.makedirs(bert_save_test, exist_ok=True)
  94. embed = BertWordPieceEncoder(model_dir_or_name='test/data_for_tests/embedding/small_bert', word_dropout=0.0,
  95. layers='-2')
  96. ds = DataSet({'words': ["this is a test . [SEP]".split()]})
  97. embed.index_datasets(ds, field_name='words')
  98. self.assertTrue(ds.has_field('word_pieces'))
  99. words = torch.LongTensor([[1, 2, 3, 4]])
  100. embed.save(bert_save_test)
  101. load_embed = BertWordPieceEncoder.load(bert_save_test)
  102. embed.eval(), load_embed.eval()
  103. self.assertEqual((embed(words) - load_embed(words)).sum(), 0)
  104. finally:
  105. import shutil
  106. shutil.rmtree(bert_save_test)