|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "213d538c",
- "metadata": {},
- "source": [
- "# T3. dataloader 的内部结构和基本使用\n",
- "\n",
- "  1   \n",
- " \n",
- "    1.1   \n",
- "\n",
- "    1.2   \n",
- "\n",
- "  2   \n",
- "\n",
- "    2.1   \n",
- "\n",
- "    2.2   \n",
- "\n",
- "  3   \n",
- " \n",
- "    3.1   \n",
- "\n",
- "    3.2   "
- ]
- },
- {
- "cell_type": "markdown",
- "id": "d74d0523",
- "metadata": {},
- "source": [
- "## 3. fastNLP 中的 dataloader\n",
- "\n",
- "### 3.1 collator 的概念与使用\n",
- "\n",
- "在`fastNLP 0.8`中,在数据加载模块`DataLoader`之前,还存在其他的一些模块,负责例如对文本数据\n",
- "\n",
- "  进行补零对齐,即 **核对器`collator`模块**,进行分词标注,即 **分词器`tokenizer`模块**\n",
- "\n",
- "  本节将对`fastNLP`中的核对器`collator`等展开介绍,分词器`tokenizer`将在下一节中详细介绍\n",
- "\n",
- "在`fastNLP 0.8`中,**核对器`collator`模块负责文本序列的补零对齐**,通过"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "aca72b49",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "from fastNLP import Collator\n",
- "\n",
- "collator = Collator()\n",
- "# collator.set_pad(field_name='text', pad_val='<pad>')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "51bf0878",
- "metadata": {},
- "source": [
- "  "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "3fd2486f",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "markdown",
- "id": "f9bbd9a7",
- "metadata": {},
- "source": [
- "### 3.2 dataloader 的结构与使用"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "651baef6",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "dl_bundle = prepare_torch_dataloader(data_bundle, train_batch_size=2)\n",
- "\n",
- "print(type(dl_bundle), type(dl_bundle['train']))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "726ba357",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dataloader = prepare_torch_dataloader(datasets['train'], train_batch_size=2)\n",
- "print(type(dataloader))\n",
- "print(dir(dataloader))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "d0795b3e",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dataloader.collate_fn"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "b0c3c58d",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "dataloader.batch_sampler"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "7ed431cc",
- "metadata": {},
- "source": [
- "### 3.3 实例:NG20 的加载预处理\n",
- "\n",
- "在`fastNLP 0.8`中,**`Trainer`模块和`Evaluator`模块分别表示“训练器”和“评测器”**\n",
- "\n",
- "  对应于之前的`fastNLP`版本中的`Trainer`模块和`Tester`模块,其定义方法如下所示\n",
- "\n",
- "在`fastNLP 0.8`中,需要注意,在同个`python`脚本中先使用`Trainer`训练,然后使用`Evaluator`评测\n",
- "\n",
- "  非常关键的问题在于**如何正确设置二者的`driver`**。这就引入了另一个问题:什么是 `driver`?"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "a89ef613",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "import pandas as pd\n",
- "\n",
- "from fastNLP import DataSet\n",
- "from fastNLP import Vocabulary\n",
- "\n",
- "dataset = DataSet.from_pandas(pd.read_csv('./data/ng20_test.csv'))"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "1624b0fa",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "from functools import partial\n",
- "\n",
- "encode = partial(tokenizer.encode_plus, max_length=100, truncation=True,\n",
- " return_attention_mask=True)\n",
- "# 会新增 input_ids 、 attention_mask 和 token_type_ids 这三个 field\n",
- "dataset.apply_field_more(encode, field_name='text')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "0991a8ee",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "target_vocab = Vocabulary(padding=None, unknown=None)\n",
- "\n",
- "target_vocab.from_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='label')\n",
- "target_vocab.index_dataset(*[ds for _, ds in data_bundle.iter_datasets()], field_name='label',\n",
- " new_field_name='labels')\n",
- "# 需要将 input_ids 的 pad 值设置为 tokenizer 的 pad 值\n",
- "dataset.set_pad('input_ids', pad_val=tokenizer.pad_token_id)\n",
- "dataset.set_ignore('label', 'text') # 因为 label 是原始的不需要的 str ,所以我们可以忽略它,让它不要在 batch 的输出中出现"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "b369137f",
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.4"
- },
- "pycharm": {
- "stem_cell": {
- "cell_type": "raw",
- "metadata": {
- "collapsed": false
- },
- "source": []
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|