You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

model_runner.py 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. """
  2. 此模块可以非常方便的测试模型。
  3. 若你的模型属于:文本分类,序列标注,自然语言推理(NLI),可以直接使用此模块测试
  4. 若模型不属于上述类别,也可以自己准备假数据,设定loss和metric进行测试
  5. 此模块的测试仅保证模型能使用fastNLP进行训练和测试,不测试模型实际性能
  6. Example::
  7. # import 全大写变量...
  8. from model_runner import *
  9. # 测试一个文本分类模型
  10. init_emb = (VOCAB_SIZE, 50)
  11. model = SomeModel(init_emb, num_cls=NUM_CLS)
  12. RUNNER.run_model_with_task(TEXT_CLS, model)
  13. # 序列标注模型
  14. RUNNER.run_model_with_task(POS_TAGGING, model)
  15. # NLI模型
  16. RUNNER.run_model_with_task(NLI, model)
  17. # 自定义模型
  18. RUNNER.run_model(model, data=get_mydata(),
  19. loss=Myloss(), metrics=Mymetric())
  20. """
  21. from fastNLP import Trainer, Tester, DataSet, Callback
  22. from fastNLP import AccuracyMetric
  23. from fastNLP import CrossEntropyLoss
  24. from fastNLP.core.const import Const as C
  25. from random import randrange
  26. VOCAB_SIZE = 100
  27. NUM_CLS = 100
  28. MAX_LEN = 10
  29. N_SAMPLES = 100
  30. N_EPOCHS = 1
  31. BATCH_SIZE = 5
  32. TEXT_CLS = 'text_cls'
  33. POS_TAGGING = 'pos_tagging'
  34. NLI = 'nli'
  35. class ModelRunner():
  36. class Checker(Callback):
  37. def on_backward_begin(self, loss):
  38. assert loss.to('cpu').numpy().isfinate()
  39. def gen_seq(self, length, vocab_size):
  40. """generate fake sequence indexes with given length"""
  41. # reserve 0 for padding
  42. return [randrange(1, vocab_size) for _ in range(length)]
  43. def gen_var_seq(self, max_len, vocab_size):
  44. """generate fake sequence indexes in variant length"""
  45. length = randrange(3, max_len) # at least 3 words in a seq
  46. return self.gen_seq(length, vocab_size)
  47. def prepare_text_classification_data(self):
  48. index = 'index'
  49. ds = DataSet({index: list(range(N_SAMPLES))})
  50. ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE),
  51. field_name=index, new_field_name=C.INPUT,
  52. is_input=True)
  53. ds.apply_field(lambda x: randrange(NUM_CLS),
  54. field_name=index, new_field_name=C.TARGET,
  55. is_target=True)
  56. ds.apply_field(len, C.INPUT, C.INPUT_LEN,
  57. is_input=True)
  58. return ds
  59. def prepare_pos_tagging_data(self):
  60. index = 'index'
  61. ds = DataSet({index: list(range(N_SAMPLES))})
  62. ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE),
  63. field_name=index, new_field_name=C.INPUT,
  64. is_input=True)
  65. ds.apply_field(lambda x: self.gen_seq(len(x), NUM_CLS),
  66. field_name=C.INPUT, new_field_name=C.TARGET,
  67. is_target=True)
  68. ds.apply_field(len, C.INPUT, C.INPUT_LEN,
  69. is_input=True, is_target=True)
  70. return ds
  71. def prepare_nli_data(self):
  72. index = 'index'
  73. ds = DataSet({index: list(range(N_SAMPLES))})
  74. ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE),
  75. field_name=index, new_field_name=C.INPUTS(0),
  76. is_input=True)
  77. ds.apply_field(lambda x: self.gen_var_seq(MAX_LEN, VOCAB_SIZE),
  78. field_name=index, new_field_name=C.INPUTS(1),
  79. is_input=True)
  80. ds.apply_field(lambda x: randrange(NUM_CLS),
  81. field_name=index, new_field_name=C.TARGET,
  82. is_target=True)
  83. ds.apply_field(len, C.INPUTS(0), C.INPUT_LENS(0),
  84. is_input=True, is_target=True)
  85. ds.apply_field(len, C.INPUTS(1), C.INPUT_LENS(1),
  86. is_input = True, is_target = True)
  87. ds.set_input(C.INPUTS(0), C.INPUTS(1))
  88. ds.set_target(C.TARGET)
  89. return ds
  90. def run_text_classification(self, model, data=None):
  91. if data is None:
  92. data = self.prepare_text_classification_data()
  93. loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET)
  94. metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET)
  95. self.run_model(model, data, loss, metric)
  96. def run_pos_tagging(self, model, data=None):
  97. if data is None:
  98. data = self.prepare_pos_tagging_data()
  99. loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET, padding_idx=0)
  100. metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET, seq_len=C.INPUT_LEN)
  101. self.run_model(model, data, loss, metric)
  102. def run_nli(self, model, data=None):
  103. if data is None:
  104. data = self.prepare_nli_data()
  105. loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET)
  106. metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET)
  107. self.run_model(model, data, loss, metric)
  108. def run_model(self, model, data, loss, metrics):
  109. """run a model, test if it can run with fastNLP"""
  110. print('testing model:', model.__class__.__name__)
  111. tester = Tester(data=data, model=model, metrics=metrics,
  112. batch_size=BATCH_SIZE, verbose=0)
  113. before_train = tester.test()
  114. trainer = Trainer(model=model, train_data=data, dev_data=None,
  115. n_epochs=N_EPOCHS, batch_size=BATCH_SIZE,
  116. loss=loss,
  117. save_path=None,
  118. use_tqdm=False)
  119. trainer.train(load_best_model=False)
  120. after_train = tester.test()
  121. for metric_name, v1 in before_train.items():
  122. assert metric_name in after_train
  123. # # at least we can sure model params changed, even if we don't know performance
  124. # v2 = after_train[metric_name]
  125. # assert v1 != v2
  126. def run_model_with_task(self, task, model):
  127. """run a model with certain task"""
  128. TASKS = {
  129. TEXT_CLS: self.run_text_classification,
  130. POS_TAGGING: self.run_pos_tagging,
  131. NLI: self.run_nli,
  132. }
  133. assert task in TASKS
  134. TASKS[task](model)
  135. RUNNER = ModelRunner()