You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_metrics.py 27 kB

Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
7 years ago
Dev0.4.0 (#149) * 1. CRF增加支持bmeso类型的tag 2. vocabulary中增加注释 * BucketSampler增加一条错误检测 * 1.修改ClipGradientCallback的bug;删除LRSchedulerCallback中的print,之后应该传入pbar进行打印;2.增加MLP注释 * update MLP module * 增加metric注释;修改trainer save过程中的bug * Update README.md fix tutorial link * Add ENAS (Efficient Neural Architecture Search) * add ignore_type in DataSet.add_field * * AutoPadder will not pad when dtype is None * add ignore_type in DataSet.apply * 修复fieldarray中padder潜在bug * 修复crf中typo; 以及可能导致数值不稳定的地方 * 修复CRF中可能存在的bug * change two default init arguments of Trainer into None * Changes to Callbacks: * 给callback添加给定几个只读属性 * 通过manager设置这些属性 * 代码优化,减轻@transfer的负担 * * 将enas相关代码放到automl目录下 * 修复fast_param_mapping的一个bug * Trainer添加自动创建save目录 * Vocabulary的打印,显示内容 * * 给vocabulary添加遍历方法 * 修复CRF为负数的bug * add SQuAD metric * add sigmoid activate function in MLP * - add star transformer model - add ConllLoader, for all kinds of conll-format files - add JsonLoader, for json-format files - add SSTLoader, for SST-2 & SST-5 - change Callback interface - fix batch multi-process when killed - add README to list models and their performance * - fix test * - fix callback & tests * - update README * 修改部分bug;调整callback * 准备发布0.4.0版本“ * update readme * support parallel loss * 防止多卡的情况导致无法正确计算loss“ * update advance_tutorial jupyter notebook * 1. 在embedding_loader中增加新的读取函数load_with_vocab(), load_without_vocab, 比之前的函数改变主要在(1)不再需要传入embed_dim(2)自动判断当前是word2vec还是glove. 2. vocabulary增加from_dataset(), index_dataset()函数。避免需要多行写index dataset的问题。 3. 在utils中新增一个cache_result()修饰器,用于cache函数的返回值。 4. callback中新增update_every属性 * 1.DataSet.apply()报错时提供错误的index 2.Vocabulary.from_dataset(), index_dataset()提供报错时的vocab顺序 3.embedloader在embed读取时遇到不规则的数据跳过这一行. * update attention * doc tools * fix some doc errors * 修改为中文注释,增加viterbi解码方法 * 样例版本 * - add pad sequence for lstm - add csv, conll, json filereader - update dataloader - remove useless dataloader - fix trainer loss print - fix tests * - fix test_tutorial * 注释增加 * 测试文档 * 本地暂存 * 本地暂存 * 修改文档的顺序 * - add document * 本地暂存 * update pooling * update bert * update documents in MLP * update documents in snli * combine self attention module to attention.py * update documents on losses.py * 对DataSet的文档进行更新 * update documents on metrics * 1. 删除了LSTM中print的内容; 2. 将Trainer和Tester的use_cuda修改为了device; 3.补充Trainer的文档 * 增加对Trainer的注释 * 完善了trainer,callback等的文档; 修改了部分代码的命名以使得代码从文档中隐藏 * update char level encoder * update documents on embedding.py * - update doc * 补充注释,并修改部分代码 * - update doc - add get_embeddings * 修改了文档配置项 * 修改embedding为init_embed初始化 * 1.增加对Trainer和Tester的多卡支持; * - add test - fix jsonloader * 删除了注释教程 * 给 dataset 增加了get_field_names * 修复bug * - add Const - fix bugs * 修改部分注释 * - add model runner for easier test models - add model tests * 修改了 docs 的配置和架构 * 修改了核心部分的一大部分文档,TODO: 1. 完善 trainer 和 tester 部分的文档 2. 研究注释样例与测试 * core部分的注释基本检查完成 * 修改了 io 部分的注释 * 全部改为相对路径引用 * 全部改为相对路径引用 * small change * 1. 从安装文件中删除api/automl的安装 2. metric中存在seq_len的bug 3. sampler中存在命名错误,已修改 * 修复 bug :兼容 cpu 版本的 PyTorch TODO:其它地方可能也存在类似的 bug * 修改文档中的引用部分 * 把 tqdm.autonotebook 换成tqdm.auto * - fix batch & vocab * 上传了文档文件 *.rst * 上传了文档文件和若干 TODO * 讨论并整合了若干模块 * core部分的测试和一些小修改 * 删除了一些冗余文档 * update init files * update const files * update const files * 增加cnn的测试 * fix a little bug * - update attention - fix tests * 完善测试 * 完成快速入门教程 * 修改了sequence_modeling 命名为 sequence_labeling 的文档 * 重新 apidoc 解决改名的遗留问题 * 修改文档格式 * 统一不同位置的seq_len_to_mask, 现统一到core.utils.seq_len_to_mask * 增加了一行提示 * 在文档中展示 dataset_loader * 提示 Dataset.read_csv 会被 CSVLoader 替换 * 完成 Callback 和 Trainer 之间的文档 * index更新了部分 * 删除冗余的print * 删除用于分词的metric,因为有可能引起错误 * 修改文档中的中文名称 * 完成了详细介绍文档 * tutorial 的 ipynb 文件 * 修改了一些介绍文档 * 修改了 models 和 modules 的主页介绍 * 加上了 titlesonly 这个设置 * 修改了模块文档展示的标题 * 修改了 core 和 io 的开篇介绍 * 修改了 modules 和 models 开篇介绍 * 使用 .. todo:: 隐藏了可能被抽到文档中的 TODO 注释 * 修改了一些注释 * delete an old metric in test * 修改 tutorials 的测试文件 * 把暂不发布的功能移到 legacy 文件夹 * 删除了不能运行的测试 * 修改 callback 的测试文件 * 删除了过时的教程和测试文件 * cache_results 参数的修改 * 修改 io 的测试文件; 删除了一些过时的测试 * 修复bug * 修复无法通过test_utils.py的测试 * 修复与pytorch1.1中的padsequence的兼容问题; 修改Trainer的pbar * 1. 修复metric中的bug; 2.增加metric测试 * add model summary * 增加别名 * 删除encoder中的嵌套层 * 修改了 core 部分 import 的顺序,__all__ 暴露的内容 * 修改了 models 部分 import 的顺序,__all__ 暴露的内容 * 修改了文件名 * 修改了 modules 模块的__all__ 和 import * fix var runn * 增加vocab的clear方法 * 一些符合 PEP8 的微调 * 更新了cache_results的例子 * 1. 对callback中indices潜在None作出提示;2.DataSet支持通过List进行index * 修改了一个typo * 修改了 README.md * update documents on bert * update documents on encoder/bert * 增加一个fitlog callback,实现与fitlog实验记录 * typo * - update dataset_loader * 增加了到 fitlog 文档的链接。 * 增加了 DataSet Loader 的文档 * - add star-transformer reproduction
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. import unittest
  2. import numpy as np
  3. import torch
  4. from fastNLP import AccuracyMetric
  5. from fastNLP.core.metrics import _pred_topk, _accuracy_topk
  6. from fastNLP.core.vocabulary import Vocabulary
  7. from collections import Counter
  8. from fastNLP.core.metrics import SpanFPreRecMetric, CMRC2018Metric, ClassifyFPreRecMetric,ConfusionMatrixMetric
  9. def _generate_tags(encoding_type, number_labels=4):
  10. """
  11. :param encoding_type: 例如BIOES, BMES, BIO等
  12. :param number_labels: 多少个label,大于1
  13. :return:
  14. """
  15. vocab = {}
  16. for i in range(number_labels):
  17. label = str(i)
  18. for tag in encoding_type:
  19. if tag == 'O':
  20. if tag not in vocab:
  21. vocab['O'] = len(vocab) + 1
  22. continue
  23. vocab['{}-{}'.format(tag, label)] = len(vocab) + 1 # 其实表达的是这个的count
  24. return vocab
  25. def _convert_res_to_fastnlp_res(metric_result):
  26. allen_result = {}
  27. key_map = {'f1-measure-overall': "f", "recall-overall": "rec", "precision-overall": "pre"}
  28. for key, value in metric_result.items():
  29. if key in key_map:
  30. key = key_map[key]
  31. else:
  32. label = key.split('-')[-1]
  33. if key.startswith('f1'):
  34. key = 'f-{}'.format(label)
  35. else:
  36. key = '{}-{}'.format(key[:3], label)
  37. allen_result[key] = round(value, 6)
  38. return allen_result
  39. class TestConfusionMatrixMetric(unittest.TestCase):
  40. def test_ConfusionMatrixMetric1(self):
  41. pred_dict = {"pred": torch.zeros(4,3)}
  42. target_dict = {'target': torch.zeros(4)}
  43. metric = ConfusionMatrixMetric()
  44. metric(pred_dict=pred_dict, target_dict=target_dict)
  45. print(metric.get_metric())
  46. def test_ConfusionMatrixMetric2(self):
  47. # (2) with corrupted size
  48. with self.assertRaises(Exception):
  49. pred_dict = {"pred": torch.zeros(4, 3, 2)}
  50. target_dict = {'target': torch.zeros(4)}
  51. metric = ConfusionMatrixMetric()
  52. metric(pred_dict=pred_dict, target_dict=target_dict, )
  53. print(metric.get_metric())
  54. def test_ConfusionMatrixMetric3(self):
  55. # (3) the second batch is corrupted size
  56. with self.assertRaises(Exception):
  57. metric = ConfusionMatrixMetric()
  58. pred_dict = {"pred": torch.zeros(4, 3, 2)}
  59. target_dict = {'target': torch.zeros(4, 3)}
  60. metric(pred_dict=pred_dict, target_dict=target_dict)
  61. pred_dict = {"pred": torch.zeros(4, 3, 2)}
  62. target_dict = {'target': torch.zeros(4)}
  63. metric(pred_dict=pred_dict, target_dict=target_dict)
  64. print(metric.get_metric())
  65. def test_ConfusionMatrixMetric4(self):
  66. # (4) check reset
  67. metric = ConfusionMatrixMetric()
  68. pred_dict = {"pred": torch.randn(4, 3, 2)}
  69. target_dict = {'target': torch.ones(4, 3)}
  70. metric(pred_dict=pred_dict, target_dict=target_dict)
  71. res = metric.get_metric()
  72. self.assertTrue(isinstance(res, dict))
  73. print(res)
  74. def test_ConfusionMatrixMetric5(self):
  75. # (5) check numpy array is not acceptable
  76. with self.assertRaises(Exception):
  77. metric = ConfusionMatrixMetric()
  78. pred_dict = {"pred": np.zeros((4, 3, 2))}
  79. target_dict = {'target': np.zeros((4, 3))}
  80. metric(pred_dict=pred_dict, target_dict=target_dict)
  81. def test_ConfusionMatrixMetric6(self):
  82. # (6) check map, match
  83. metric = ConfusionMatrixMetric(pred='predictions', target='targets')
  84. pred_dict = {"predictions": torch.randn(4, 3, 2)}
  85. target_dict = {'targets': torch.zeros(4, 3)}
  86. metric(pred_dict=pred_dict, target_dict=target_dict)
  87. res = metric.get_metric()
  88. print(res)
  89. def test_ConfusionMatrixMetric7(self):
  90. # (7) check map, include unused
  91. metric = ConfusionMatrixMetric(pred='prediction', target='targets')
  92. pred_dict = {"prediction": torch.zeros(4, 3, 2), 'unused': 1}
  93. target_dict = {'targets': torch.zeros(4, 3)}
  94. metric(pred_dict=pred_dict, target_dict=target_dict)
  95. def test_ConfusionMatrixMetric8(self):
  96. # (8) check _fast_metric
  97. with self.assertRaises(Exception):
  98. metric = ConfusionMatrixMetric()
  99. pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(3) * 3}
  100. target_dict = {'targets': torch.zeros(4, 3)}
  101. metric(pred_dict=pred_dict, target_dict=target_dict)
  102. print(metric.get_metric())
  103. def test_duplicate(self):
  104. # 0.4.1的潜在bug,不能出现形参重复的情况
  105. metric = ConfusionMatrixMetric(pred='predictions', target='targets')
  106. pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(4) * 3, 'pred':0}
  107. target_dict = {'targets':torch.zeros(4, 3), 'target': 0}
  108. metric(pred_dict=pred_dict, target_dict=target_dict)
  109. print(metric.get_metric())
  110. def test_seq_len(self):
  111. N = 256
  112. seq_len = torch.zeros(N).long()
  113. seq_len[0] = 2
  114. pred = {'pred': torch.ones(N, 2)}
  115. target = {'target': torch.ones(N, 2), 'seq_len': seq_len}
  116. metric = ConfusionMatrixMetric()
  117. metric(pred_dict=pred, target_dict=target)
  118. metric.get_metric(reset=False)
  119. seq_len[1:] = 1
  120. metric(pred_dict=pred, target_dict=target)
  121. metric.get_metric()
  122. def test_vocab(self):
  123. vocab = Vocabulary()
  124. word_list = "this is a word list".split()
  125. vocab.update(word_list)
  126. pred_dict = {"pred": torch.zeros(4,3)}
  127. target_dict = {'target': torch.zeros(4)}
  128. metric = ConfusionMatrixMetric(vocab=vocab)
  129. metric(pred_dict=pred_dict, target_dict=target_dict)
  130. print(metric.get_metric())
  131. class TestAccuracyMetric(unittest.TestCase):
  132. def test_AccuracyMetric1(self):
  133. # (1) only input, targets passed
  134. pred_dict = {"pred": torch.zeros(4, 3)}
  135. target_dict = {'target': torch.zeros(4)}
  136. metric = AccuracyMetric()
  137. metric(pred_dict=pred_dict, target_dict=target_dict)
  138. print(metric.get_metric())
  139. def test_AccuracyMetric2(self):
  140. # (2) with corrupted size
  141. try:
  142. pred_dict = {"pred": torch.zeros(4, 3, 2)}
  143. target_dict = {'target': torch.zeros(4)}
  144. metric = AccuracyMetric()
  145. metric(pred_dict=pred_dict, target_dict=target_dict, )
  146. print(metric.get_metric())
  147. except Exception as e:
  148. print(e)
  149. return
  150. print("No exception catches.")
  151. def test_AccuracyMetric3(self):
  152. # (3) the second batch is corrupted size
  153. try:
  154. metric = AccuracyMetric()
  155. pred_dict = {"pred": torch.zeros(4, 3, 2)}
  156. target_dict = {'target': torch.zeros(4, 3)}
  157. metric(pred_dict=pred_dict, target_dict=target_dict)
  158. pred_dict = {"pred": torch.zeros(4, 3, 2)}
  159. target_dict = {'target': torch.zeros(4)}
  160. metric(pred_dict=pred_dict, target_dict=target_dict)
  161. print(metric.get_metric())
  162. except Exception as e:
  163. print(e)
  164. return
  165. self.assertTrue(True, False), "No exception catches."
  166. def test_AccuaryMetric4(self):
  167. # (5) check reset
  168. metric = AccuracyMetric()
  169. pred_dict = {"pred": torch.randn(4, 3, 2)}
  170. target_dict = {'target': torch.ones(4, 3)}
  171. metric(pred_dict=pred_dict, target_dict=target_dict)
  172. ans = torch.argmax(pred_dict["pred"], dim=2).to(target_dict["target"]) == target_dict["target"]
  173. res = metric.get_metric()
  174. self.assertTrue(isinstance(res, dict))
  175. self.assertTrue("acc" in res)
  176. self.assertAlmostEqual(res["acc"], float(ans.float().mean()), places=3)
  177. def test_AccuaryMetric5(self):
  178. # (5) check reset
  179. metric = AccuracyMetric()
  180. pred_dict = {"pred": torch.randn(4, 3, 2)}
  181. target_dict = {'target': torch.zeros(4, 3)}
  182. metric(pred_dict=pred_dict, target_dict=target_dict)
  183. res = metric.get_metric(reset=False)
  184. ans = (torch.argmax(pred_dict["pred"], dim=2).float() == target_dict["target"]).float().mean()
  185. self.assertAlmostEqual(res["acc"], float(ans), places=4)
  186. def test_AccuaryMetric6(self):
  187. # (6) check numpy array is not acceptable
  188. try:
  189. metric = AccuracyMetric()
  190. pred_dict = {"pred": np.zeros((4, 3, 2))}
  191. target_dict = {'target': np.zeros((4, 3))}
  192. metric(pred_dict=pred_dict, target_dict=target_dict)
  193. except Exception as e:
  194. print(e)
  195. return
  196. self.assertTrue(True, False), "No exception catches."
  197. def test_AccuaryMetric7(self):
  198. # (7) check map, match
  199. metric = AccuracyMetric(pred='predictions', target='targets')
  200. pred_dict = {"predictions": torch.randn(4, 3, 2)}
  201. target_dict = {'targets': torch.zeros(4, 3)}
  202. metric(pred_dict=pred_dict, target_dict=target_dict)
  203. res = metric.get_metric()
  204. ans = (torch.argmax(pred_dict["predictions"], dim=2).float() == target_dict["targets"]).float().mean()
  205. self.assertAlmostEqual(res["acc"], float(ans), places=4)
  206. def test_AccuaryMetric8(self):
  207. try:
  208. metric = AccuracyMetric(pred='predictions', target='targets')
  209. pred_dict = {"predictions": torch.zeros(4, 3, 2)}
  210. target_dict = {'targets': torch.zeros(4, 3)}
  211. metric(pred_dict=pred_dict, target_dict=target_dict, )
  212. self.assertDictEqual(metric.get_metric(), {'acc': 1})
  213. except Exception as e:
  214. print(e)
  215. return
  216. self.assertTrue(True, False), "No exception catches."
  217. def test_AccuaryMetric9(self):
  218. # (9) check map, include unused
  219. try:
  220. metric = AccuracyMetric(pred='prediction', target='targets')
  221. pred_dict = {"prediction": torch.zeros(4, 3, 2), 'unused': 1}
  222. target_dict = {'targets': torch.zeros(4, 3)}
  223. metric(pred_dict=pred_dict, target_dict=target_dict)
  224. self.assertDictEqual(metric.get_metric(), {'acc': 1})
  225. except Exception as e:
  226. print(e)
  227. return
  228. self.assertTrue(True, False), "No exception catches."
  229. def test_AccuaryMetric10(self):
  230. # (10) check _fast_metric
  231. try:
  232. metric = AccuracyMetric()
  233. pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(3) * 3}
  234. target_dict = {'targets': torch.zeros(4, 3)}
  235. metric(pred_dict=pred_dict, target_dict=target_dict)
  236. self.assertDictEqual(metric.get_metric(), {'acc': 1})
  237. except Exception as e:
  238. print(e)
  239. return
  240. self.assertTrue(True, False), "No exception catches."
  241. def test_duplicate(self):
  242. # 0.4.1的潜在bug,不能出现形参重复的情况
  243. metric = AccuracyMetric(pred='predictions', target='targets')
  244. pred_dict = {"predictions": torch.zeros(4, 3, 2), "seq_len": torch.ones(4) * 3, 'pred':0}
  245. target_dict = {'targets':torch.zeros(4, 3), 'target': 0}
  246. metric(pred_dict=pred_dict, target_dict=target_dict)
  247. def test_seq_len(self):
  248. N = 256
  249. seq_len = torch.zeros(N).long()
  250. seq_len[0] = 2
  251. pred = {'pred': torch.ones(N, 2)}
  252. target = {'target': torch.ones(N, 2), 'seq_len': seq_len}
  253. metric = AccuracyMetric()
  254. metric(pred_dict=pred, target_dict=target)
  255. self.assertDictEqual(metric.get_metric(), {'acc': 1.})
  256. seq_len[1:] = 1
  257. metric(pred_dict=pred, target_dict=target)
  258. self.assertDictEqual(metric.get_metric(), {'acc': 1.})
  259. class SpanFPreRecMetricTest(unittest.TestCase):
  260. def test_case1(self):
  261. from fastNLP.core.metrics import _bmes_tag_to_spans
  262. from fastNLP.core.metrics import _bio_tag_to_spans
  263. bmes_lst = ['M-8', 'S-2', 'S-0', 'B-9', 'B-6', 'E-5', 'B-7', 'S-2', 'E-7', 'S-8']
  264. bio_lst = ['O-8', 'O-2', 'B-0', 'O-9', 'I-6', 'I-5', 'I-7', 'I-2', 'I-7', 'O-8']
  265. expect_bmes_res = set()
  266. expect_bmes_res.update([('8', (0, 1)), ('2', (1, 2)), ('0', (2, 3)), ('9', (3, 4)), ('6', (4, 5)),
  267. ('5', (5, 6)), ('7', (6, 7)), ('2', (7, 8)), ('7', (8, 9)), ('8', (9, 10))])
  268. expect_bio_res = set()
  269. expect_bio_res.update([('7', (8, 9)), ('0', (2, 3)), ('2', (7, 8)), ('5', (5, 6)),
  270. ('6', (4, 5)), ('7', (6, 7))])
  271. self.assertSetEqual(expect_bmes_res, set(_bmes_tag_to_spans(bmes_lst)))
  272. self.assertSetEqual(expect_bio_res, set(_bio_tag_to_spans(bio_lst)))
  273. def test_case2(self):
  274. # 测试不带label的
  275. from fastNLP.core.metrics import _bmes_tag_to_spans
  276. from fastNLP.core.metrics import _bio_tag_to_spans
  277. bmes_lst = ['B', 'E', 'B', 'S', 'B', 'M', 'E', 'M', 'B', 'E']
  278. bio_lst = ['I', 'B', 'O', 'O', 'I', 'O', 'I', 'B', 'O', 'O']
  279. expect_bmes_res = set()
  280. expect_bmes_res.update([('', (0, 2)), ('', (2, 3)), ('', (3, 4)), ('', (4, 7)), ('', (7, 8)), ('', (8, 10))])
  281. expect_bio_res = set()
  282. expect_bio_res.update([('', (7, 8)), ('', (6, 7)), ('', (4, 5)), ('', (0, 1)), ('', (1, 2))])
  283. self.assertSetEqual(expect_bmes_res, set(_bmes_tag_to_spans(bmes_lst)))
  284. self.assertSetEqual(expect_bio_res, set(_bio_tag_to_spans(bio_lst)))
  285. def test_case3(self):
  286. number_labels = 4
  287. # bio tag
  288. fastnlp_bio_vocab = Vocabulary(unknown=None, padding=None)
  289. fastnlp_bio_vocab.word_count = Counter(_generate_tags('BIO', number_labels))
  290. fastnlp_bio_metric = SpanFPreRecMetric(tag_vocab=fastnlp_bio_vocab, only_gross=False)
  291. bio_sequence = torch.FloatTensor([[[-0.4424, -0.4579, -0.7376, 1.8129, 0.1316, 1.6566, -1.2169,
  292. -0.3782, 0.8240],
  293. [-1.2348, -0.1876, -0.1462, -0.4834, -0.6692, -0.9735, 1.1563,
  294. -0.3562, -1.4116],
  295. [ 1.6550, -0.9555, 0.3782, -1.3160, -1.5835, -0.3443, -1.7858,
  296. 2.0023, 0.7075],
  297. [-0.3772, -0.5447, -1.5631, 1.1614, 1.4598, -1.2764, 0.5186,
  298. 0.3832, -0.1540],
  299. [-0.1011, 0.0600, 1.1090, -0.3545, 0.1284, 1.1484, -1.0120,
  300. -1.3508, -0.9513],
  301. [ 1.8948, 0.8627, -2.1359, 1.3740, -0.7499, 1.5019, 0.6919,
  302. -0.0842, -0.4294]],
  303. [[-0.2802, 0.6941, -0.4788, -0.3845, 1.7752, 1.2950, -1.9490,
  304. -1.4138, -0.8853],
  305. [-1.3752, -0.5457, -0.5305, 0.4018, 0.2934, 0.7931, 2.3845,
  306. -1.0726, 0.0364],
  307. [ 0.3621, 0.2609, 0.1269, -0.5950, 0.7212, 0.5959, 1.6264,
  308. -0.8836, -0.9320],
  309. [ 0.2003, -1.0758, -1.1560, -0.6472, -1.7549, 0.1264, 0.6044,
  310. -1.6857, 1.1571],
  311. [ 1.4277, -0.4915, 0.4496, 2.2027, 0.0730, -3.1792, -0.5125,
  312. -0.5837, 1.0184],
  313. [ 1.9495, 1.7145, -0.2143, -0.1230, -0.2205, 0.8250, 0.4943,
  314. -0.9025, 0.0864]]])
  315. bio_target = torch.LongTensor([[3, 6, 0, 8, 2, 4],
  316. [4, 1, 7, 0, 4, 7]])
  317. fastnlp_bio_metric({'pred': bio_sequence, 'seq_len': torch.LongTensor([6, 6])}, {'target': bio_target})
  318. expect_bio_res = {'pre-1': 0.333333, 'rec-1': 0.333333, 'f-1': 0.333333, 'pre-2': 0.5, 'rec-2': 0.5,
  319. 'f-2': 0.5, 'pre-0': 0.0, 'rec-0': 0.0, 'f-0': 0.0, 'pre-3': 0.0, 'rec-3': 0.0,
  320. 'f-3': 0.0, 'pre': 0.222222, 'rec': 0.181818, 'f': 0.2}
  321. self.assertDictEqual(expect_bio_res, fastnlp_bio_metric.get_metric())
  322. def test_case4(self):
  323. # bmes tag
  324. def _generate_samples():
  325. target = []
  326. seq_len = []
  327. vocab = Vocabulary(unknown=None, padding=None)
  328. for i in range(3):
  329. target_i = []
  330. seq_len_i = 0
  331. for j in range(1, 10):
  332. word_len = np.random.randint(1, 5)
  333. seq_len_i += word_len
  334. if word_len==1:
  335. target_i.append('S')
  336. else:
  337. target_i.append('B')
  338. target_i.extend(['M']*(word_len-2))
  339. target_i.append('E')
  340. vocab.add_word_lst(target_i)
  341. target.append(target_i)
  342. seq_len.append(seq_len_i)
  343. target_ = np.zeros((3, max(seq_len)))
  344. for i in range(3):
  345. target_i = [vocab.to_index(t) for t in target[i]]
  346. target_[i, :seq_len[i]] = target_i
  347. return target_, target, seq_len, vocab
  348. def get_eval(raw_target, pred, vocab, seq_len):
  349. pred = pred.argmax(dim=-1).tolist()
  350. tp = 0
  351. gold = 0
  352. seg = 0
  353. pred_target = []
  354. for i in range(len(seq_len)):
  355. tags = [vocab.to_word(p) for p in pred[i][:seq_len[i]]]
  356. spans = []
  357. prev_bmes_tag = None
  358. for idx, tag in enumerate(tags):
  359. if tag in ('B', 'S'):
  360. spans.append([idx, idx])
  361. elif tag in ('M', 'E') and prev_bmes_tag in ('B', 'M'):
  362. spans[-1][1] = idx
  363. else:
  364. spans.append([idx, idx])
  365. prev_bmes_tag = tag
  366. tmp = []
  367. for span in spans:
  368. if span[1]-span[0]>0:
  369. tmp.extend(['B'] + ['M']*(span[1]-span[0]-1) + ['E'])
  370. else:
  371. tmp.append('S')
  372. pred_target.append(tmp)
  373. for i in range(len(seq_len)):
  374. raw_pred = pred_target[i]
  375. start = 0
  376. for j in range(seq_len[i]):
  377. if raw_target[i][j] in ('E', 'S'):
  378. flag = True
  379. for k in range(start, j+1):
  380. if raw_target[i][k]!=raw_pred[k]:
  381. flag = False
  382. break
  383. if flag:
  384. tp += 1
  385. start = j + 1
  386. gold += 1
  387. if raw_pred[j] in ('E', 'S'):
  388. seg += 1
  389. pre = round(tp/seg, 6)
  390. rec = round(tp/gold, 6)
  391. return {'f': round(2*pre*rec/(pre+rec), 6), 'pre': pre, 'rec':rec}
  392. target, raw_target, seq_len, vocab = _generate_samples()
  393. pred = torch.randn(3, max(seq_len), 4)
  394. expected_metric = get_eval(raw_target, pred, vocab, seq_len)
  395. metric = SpanFPreRecMetric(vocab, encoding_type='bmes')
  396. metric({'pred': pred, 'seq_len':torch.LongTensor(seq_len)}, {'target': torch.from_numpy(target)})
  397. # print(metric.get_metric(reset=False))
  398. # print(expected_metric)
  399. metric_value = metric.get_metric()
  400. for key, value in expected_metric.items():
  401. self.assertAlmostEqual(value, metric_value[key], places=5)
  402. def test_auto_encoding_type_infer(self):
  403. # 检查是否可以自动check encode的类型
  404. vocabs = {}
  405. import random
  406. for encoding_type in ['bio', 'bioes', 'bmeso']:
  407. vocab = Vocabulary(unknown=None, padding=None)
  408. for i in range(random.randint(10, 100)):
  409. label = str(random.randint(1, 10))
  410. for tag in encoding_type:
  411. if tag!='o':
  412. vocab.add_word(f'{tag}-{label}')
  413. else:
  414. vocab.add_word('o')
  415. vocabs[encoding_type] = vocab
  416. for e in ['bio', 'bioes', 'bmeso']:
  417. with self.subTest(e=e):
  418. metric = SpanFPreRecMetric(tag_vocab=vocabs[e])
  419. assert metric.encoding_type == e
  420. bmes_vocab = _generate_tags('bmes')
  421. vocab = Vocabulary()
  422. for tag, index in bmes_vocab.items():
  423. vocab.add_word(tag)
  424. metric = SpanFPreRecMetric(vocab)
  425. assert metric.encoding_type == 'bmes'
  426. # 一些无法check的情况
  427. vocab = Vocabulary()
  428. for i in range(10):
  429. vocab.add_word(str(i))
  430. with self.assertRaises(Exception):
  431. metric = SpanFPreRecMetric(vocab)
  432. def test_encoding_type(self):
  433. # 检查传入的tag_vocab与encoding_type不符合时,是否会报错
  434. vocabs = {}
  435. import random
  436. from itertools import product
  437. for encoding_type in ['bio', 'bioes', 'bmeso']:
  438. vocab = Vocabulary(unknown=None, padding=None)
  439. for i in range(random.randint(10, 100)):
  440. label = str(random.randint(1, 10))
  441. for tag in encoding_type:
  442. if tag!='o':
  443. vocab.add_word(f'{tag}-{label}')
  444. else:
  445. vocab.add_word('o')
  446. vocabs[encoding_type] = vocab
  447. for e1, e2 in product(['bio', 'bioes', 'bmeso'], ['bio', 'bioes', 'bmeso']):
  448. with self.subTest(e1=e1, e2=e2):
  449. if e1==e2:
  450. metric = SpanFPreRecMetric(vocabs[e1], encoding_type=e2)
  451. else:
  452. s2 = set(e2)
  453. s2.update(set(e1))
  454. if s2==set(e2):
  455. continue
  456. with self.assertRaises(AssertionError):
  457. metric = SpanFPreRecMetric(vocabs[e1], encoding_type=e2)
  458. for encoding_type in ['bio', 'bioes', 'bmeso']:
  459. with self.assertRaises(AssertionError):
  460. metric = SpanFPreRecMetric(vocabs[encoding_type], encoding_type='bmes')
  461. with self.assertWarns(Warning):
  462. vocab = Vocabulary(unknown=None, padding=None).add_word_lst(list('bmes'))
  463. metric = SpanFPreRecMetric(vocab, encoding_type='bmeso')
  464. vocab = Vocabulary().add_word_lst(list('bmes'))
  465. metric = SpanFPreRecMetric(vocab, encoding_type='bmeso')
  466. class TestCMRC2018Metric(unittest.TestCase):
  467. def test_case1(self):
  468. # 测试能否正确计算
  469. import torch
  470. metric = CMRC2018Metric()
  471. raw_chars = [list("abcsdef"), list("123456s789")]
  472. context_len = torch.LongTensor([3, 6])
  473. answers = [["abc", "abc", "abc"], ["12", "12", "12"]]
  474. pred_start = torch.randn(2, max(map(len, raw_chars)))
  475. pred_end = torch.randn(2, max(map(len, raw_chars)))
  476. pred_start[0, 0] = 1000 # 正好是abc
  477. pred_end[0, 2] = 1000
  478. pred_start[1, 1] = 1000 # 取出234
  479. pred_end[1, 3] = 1000
  480. metric.evaluate(answers=answers, raw_chars=raw_chars, pred_start=pred_start,
  481. pred_end=pred_end, context_len=context_len)
  482. eval_res = metric.get_metric()
  483. self.assertDictEqual(eval_res, {'f1': 70.0, 'em': 50.0})
  484. class TestUsefulFunctions(unittest.TestCase):
  485. # 测试metrics.py中一些看上去挺有用的函数
  486. def test_case_1(self):
  487. # multi-class
  488. _ = _accuracy_topk(np.random.randint(0, 3, size=(10, 1)), np.random.randint(0, 3, size=(10, 1)), k=3)
  489. _ = _pred_topk(np.random.randint(0, 3, size=(10, 1)))
  490. # 跑通即可
  491. class TestClassfiyFPreRecMetric(unittest.TestCase):
  492. def test_case_1(self):
  493. pred = torch.FloatTensor([[-0.1603, -1.3247, 0.2010, 0.9240, -0.6396],
  494. [-0.7316, -1.6028, 0.2281, 0.3558, 1.2500],
  495. [-1.2943, -1.7350, -0.7085, 1.1269, 1.0782],
  496. [ 0.1314, -0.2578, 0.7200, 1.0920, -1.0819],
  497. [-0.6787, -0.9081, -0.2752, -1.5818, 0.5538],
  498. [-0.2925, 1.1320, 2.8709, -0.6225, -0.6279],
  499. [-0.3320, -0.9009, -1.5762, 0.3810, -0.1220],
  500. [ 0.4601, -1.0509, 1.4242, 0.3427, 2.7014],
  501. [-0.5558, 1.0899, -1.9045, 0.3377, 1.3192],
  502. [-0.8251, -0.1558, -0.0871, -0.6755, -0.5905],
  503. [ 0.1019, 1.2504, -1.1627, -0.7062, 1.8654],
  504. [ 0.9016, -0.1984, -0.0831, -0.7646, 1.5309],
  505. [ 0.2073, 0.2250, -0.0879, 0.1608, -0.8915],
  506. [ 0.3624, 0.3806, 0.3159, -0.3603, -0.6672],
  507. [ 0.2714, 2.5086, -0.1053, -0.5188, 0.9229],
  508. [ 0.3258, -0.0303, 1.1439, -0.9123, 1.5180],
  509. [ 1.2496, -1.0298, -0.4463, 0.1186, -1.7089],
  510. [ 0.0788, 0.6300, -1.3336, -0.7122, 1.0164],
  511. [-1.1900, -0.9620, -0.3839, 0.1159, -1.2045],
  512. [-0.9037, -0.1447, 1.1834, -0.2617, 2.6112],
  513. [ 0.1507, 0.1686, -0.1535, -0.3669, -0.8425],
  514. [ 1.0537, 1.1958, -1.2309, 1.0405, 1.3018],
  515. [-0.9823, -0.9712, 1.1560, -0.6473, 1.0361],
  516. [ 0.8659, -0.2166, -0.8335, -0.3557, -0.5660],
  517. [-1.4742, -0.8773, -2.5237, 0.7410, 0.1506],
  518. [-1.3032, -1.7157, 0.7479, 1.0755, 1.0817],
  519. [-0.2988, 2.3745, 1.2072, 0.0054, 1.1877],
  520. [-0.0123, 1.6513, 0.2741, -0.7791, 0.6161],
  521. [ 1.6339, -1.0365, 0.3961, -0.9683, 0.2684],
  522. [-0.0278, -2.0856, -0.5376, 0.5129, -0.3169],
  523. [ 0.9386, 0.8317, 0.9518, -0.5050, -0.2808],
  524. [-0.6907, 0.5020, -0.9039, -1.1061, 0.1656]])
  525. arg_max_pred = torch.Tensor([3, 2, 3, 3, 4, 2, 3, 4, 4, 2, 4, 4, 1, 1,
  526. 1, 4, 0, 4, 3, 4, 1, 4, 2, 0,
  527. 3, 4, 1, 1, 0, 3, 2, 1])
  528. target = torch.Tensor([3, 3, 3, 3, 4, 1, 0, 2, 1, 2, 4, 4, 1, 1,
  529. 1, 4, 0, 4, 3, 4, 1, 4, 2, 0,
  530. 3, 4, 1, 1, 0, 3, 2, 1])
  531. metric = ClassifyFPreRecMetric(f_type='macro')
  532. metric.evaluate(pred, target)
  533. result_dict = metric.get_metric(reset=True)
  534. ground_truth = {'f': 0.8362782, 'pre': 0.8269841, 'rec': 0.8668831}
  535. for keys in ['f', 'pre', 'rec']:
  536. self.assertAlmostEqual(result_dict[keys], ground_truth[keys], delta=0.0001)
  537. metric = ClassifyFPreRecMetric(f_type='micro')
  538. metric.evaluate(pred, target)
  539. result_dict = metric.get_metric(reset=True)
  540. ground_truth = {'f': 0.84375, 'pre': 0.84375, 'rec': 0.84375}
  541. for keys in ['f', 'pre', 'rec']:
  542. self.assertAlmostEqual(result_dict[keys], ground_truth[keys], delta=0.0001)
  543. metric = ClassifyFPreRecMetric(only_gross=False, f_type='micro')
  544. metric.evaluate(pred, target)
  545. result_dict = metric.get_metric(reset=True)
  546. ground_truth = {'f-0': 0.857143, 'pre-0': 0.75, 'rec-0': 1.0, 'f-1': 0.875, 'pre-1': 0.777778, 'rec-1': 1.0,
  547. 'f-2': 0.75, 'pre-2': 0.75, 'rec-2': 0.75, 'f-3': 0.857143, 'pre-3': 0.857143,
  548. 'rec-3': 0.857143, 'f-4': 0.842105, 'pre-4': 1.0, 'rec-4': 0.727273, 'f': 0.84375,
  549. 'pre': 0.84375, 'rec': 0.84375}
  550. for keys in ground_truth.keys():
  551. self.assertAlmostEqual(result_dict[keys], ground_truth[keys], delta=0.0001)