|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# 使用Modules和Models快速搭建自定义模型\n",
- "\n",
- "modules 和 models 用于构建 fastNLP 所需的神经网络模型,它可以和 torch.nn 中的模型一起使用。 下面我们会分三节介绍编写构建模型的具体方法。\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "我们首先准备好和上篇教程一样的基础实验代码"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP.io import SST2Pipe\n",
- "from fastNLP import Trainer, CrossEntropyLoss, AccuracyMetric\n",
- "import torch\n",
- "\n",
- "databundle = SST2Pipe().process_from_file()\n",
- "vocab = databundle.get_vocab('words')\n",
- "train_data = databundle.get_dataset('train')[:5000]\n",
- "train_data, test_data = train_data.split(0.015)\n",
- "dev_data = databundle.get_dataset('dev')\n",
- "\n",
- "loss = CrossEntropyLoss()\n",
- "metric = AccuracyMetric()\n",
- "device = 0 if torch.cuda.is_available() else 'cpu'"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 使用 models 中的模型\n",
- "\n",
- "fastNLP 在 models 模块中内置了如 CNNText 、 SeqLabeling 等完整的模型,以供用户直接使用。 以文本分类的任务为例,我们从 models 中导入 CNNText 模型,用它进行训练。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input fields after batch(if batch size is 2):\n",
- "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 41]) \n",
- "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "target fields after batch(if batch size is 2):\n",
- "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "\n",
- "training epochs started 2020-02-28-00-56-04\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=1540.0), HTML(value='')), layout=Layout(d…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.22 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 1/10. Step:154/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.760321\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.29 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 2/10. Step:308/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.727064\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.48 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 3/10. Step:462/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.758028\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.24 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 4/10. Step:616/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.759174\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.47 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 5/10. Step:770/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.743119\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.22 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 6/10. Step:924/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.756881\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.21 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 7/10. Step:1078/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.752294\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.21 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 8/10. Step:1232/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.756881\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.15 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 9/10. Step:1386/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.75344\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.12 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 10/10. Step:1540/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.752294\n",
- "\n",
- "\r\n",
- "In Epoch:1/Step:154, got best dev performance:\n",
- "AccuracyMetric: acc=0.760321\n",
- "Reloaded the best model.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'best_eval': {'AccuracyMetric': {'acc': 0.760321}},\n",
- " 'best_epoch': 1,\n",
- " 'best_step': 154,\n",
- " 'seconds': 29.3}"
- ]
- },
- "execution_count": 3,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP.models import CNNText\n",
- "\n",
- "model_cnn = CNNText((len(vocab),100), num_classes=2, dropout=0.1)\n",
- "\n",
- "trainer = Trainer(train_data=train_data, dev_data=dev_data, metrics=metric,\n",
- " loss=loss, device=device, model=model_cnn)\n",
- "trainer.train()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "在 iPython 环境输入 model_cnn ,我们可以看到 model_cnn 的网络结构"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 4,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "CNNText(\n",
- " (embed): Embedding(\n",
- " (embed): Embedding(16292, 100)\n",
- " (dropout): Dropout(p=0.0, inplace=False)\n",
- " )\n",
- " (conv_pool): ConvMaxpool(\n",
- " (convs): ModuleList(\n",
- " (0): Conv1d(100, 30, kernel_size=(1,), stride=(1,), bias=False)\n",
- " (1): Conv1d(100, 40, kernel_size=(3,), stride=(1,), padding=(1,), bias=False)\n",
- " (2): Conv1d(100, 50, kernel_size=(5,), stride=(1,), padding=(2,), bias=False)\n",
- " )\n",
- " )\n",
- " (dropout): Dropout(p=0.1, inplace=False)\n",
- " (fc): Linear(in_features=120, out_features=2, bias=True)\n",
- ")"
- ]
- },
- "execution_count": 4,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_cnn"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 使用 nn.torch 编写模型\n",
- "\n",
- "FastNLP 完全支持使用 pyTorch 编写的模型,但与 pyTorch 中编写模型的常见方法不同, 用于 fastNLP 的模型中 forward 函数需要返回一个字典,字典中至少需要包含 pred 这个字段。\n",
- "\n",
- "下面是使用 pyTorch 中的 torch.nn 模块编写的文本分类,注意观察代码中标注的向量维度。 由于 pyTorch 使用了约定俗成的维度设置,使得 forward 中需要多次处理维度顺序"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {},
- "outputs": [],
- "source": [
- "import torch\n",
- "import torch.nn as nn\n",
- "\n",
- "class LSTMText(nn.Module):\n",
- " def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n",
- " super().__init__()\n",
- "\n",
- " self.embedding = nn.Embedding(vocab_size, embedding_dim)\n",
- " self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True, dropout=dropout)\n",
- " self.fc = nn.Linear(hidden_dim * 2, output_dim)\n",
- " self.dropout = nn.Dropout(dropout)\n",
- "\n",
- " def forward(self, words):\n",
- " # (input) words : (batch_size, seq_len)\n",
- " words = words.permute(1,0)\n",
- " # words : (seq_len, batch_size)\n",
- "\n",
- " embedded = self.dropout(self.embedding(words))\n",
- " # embedded : (seq_len, batch_size, embedding_dim)\n",
- " output, (hidden, cell) = self.lstm(embedded)\n",
- " # output: (seq_len, batch_size, hidden_dim * 2)\n",
- " # hidden: (num_layers * 2, batch_size, hidden_dim)\n",
- " # cell: (num_layers * 2, batch_size, hidden_dim)\n",
- "\n",
- " hidden = torch.cat((hidden[-2, :, :], hidden[-1, :, :]), dim=1)\n",
- " hidden = self.dropout(hidden)\n",
- " # hidden: (batch_size, hidden_dim * 2)\n",
- "\n",
- " pred = self.fc(hidden.squeeze(0))\n",
- " # result: (batch_size, output_dim)\n",
- " return {\"pred\":pred}"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "我们同样可以在 iPython 环境中查看这个模型的网络结构"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "LSTMText(\n",
- " (embedding): Embedding(16292, 100)\n",
- " (lstm): LSTM(100, 64, num_layers=2, dropout=0.5, bidirectional=True)\n",
- " (fc): Linear(in_features=128, out_features=2, bias=True)\n",
- " (dropout): Dropout(p=0.5, inplace=False)\n",
- ")"
- ]
- },
- "execution_count": 6,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "model_lstm = LSTMText(len(vocab), 100, 2)\n",
- "model_lstm "
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "scrolled": true
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input fields after batch(if batch size is 2):\n",
- "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 41]) \n",
- "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "target fields after batch(if batch size is 2):\n",
- "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "\n",
- "training epochs started 2020-02-28-00-56-34\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=1540.0), HTML(value='')), layout=Layout(d…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.36 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 1/10. Step:154/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.59289\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.35 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 2/10. Step:308/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.674312\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.21 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 3/10. Step:462/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.724771\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.4 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 4/10. Step:616/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.748853\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.24 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 5/10. Step:770/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.756881\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.29 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 6/10. Step:924/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.741972\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.32 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 7/10. Step:1078/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.754587\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.24 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 8/10. Step:1232/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.756881\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.28 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 9/10. Step:1386/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.740826\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.23 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 10/10. Step:1540/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.751147\n",
- "\n",
- "\r\n",
- "In Epoch:5/Step:770, got best dev performance:\n",
- "AccuracyMetric: acc=0.756881\n",
- "Reloaded the best model.\n"
- ]
- },
- {
- "data": {
- "text/plain": [
- "{'best_eval': {'AccuracyMetric': {'acc': 0.756881}},\n",
- " 'best_epoch': 5,\n",
- " 'best_step': 770,\n",
- " 'seconds': 45.69}"
- ]
- },
- "execution_count": 7,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "trainer = Trainer(train_data=train_data, dev_data=dev_data, metrics=metric,\n",
- " loss=loss, device=device, model=model_lstm)\n",
- "trainer.train()"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## 使用 modules 编写模型\n",
- "\n",
- "下面我们使用 fastNLP.modules 中的组件来构建同样的网络。由于 fastNLP 统一把 batch_size 放在第一维, 在编写代码的过程中会有一定的便利。"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "MyText(\n",
- " (embedding): Embedding(\n",
- " (embed): Embedding(16292, 100)\n",
- " (dropout): Dropout(p=0.0, inplace=False)\n",
- " )\n",
- " (lstm): LSTM(\n",
- " (lstm): LSTM(100, 64, num_layers=2, batch_first=True, bidirectional=True)\n",
- " )\n",
- " (mlp): MLP(\n",
- " (hiddens): ModuleList()\n",
- " (output): Linear(in_features=128, out_features=2, bias=True)\n",
- " (dropout): Dropout(p=0.5, inplace=False)\n",
- " )\n",
- ")"
- ]
- },
- "execution_count": 8,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "from fastNLP.modules import LSTM, MLP\n",
- "from fastNLP.embeddings import Embedding\n",
- "\n",
- "\n",
- "class MyText(nn.Module):\n",
- " def __init__(self, vocab_size, embedding_dim, output_dim, hidden_dim=64, num_layers=2, dropout=0.5):\n",
- " super().__init__()\n",
- "\n",
- " self.embedding = Embedding((vocab_size, embedding_dim))\n",
- " self.lstm = LSTM(embedding_dim, hidden_dim, num_layers=num_layers, bidirectional=True)\n",
- " self.mlp = MLP([hidden_dim*2,output_dim], dropout=dropout)\n",
- "\n",
- " def forward(self, words):\n",
- " embedded = self.embedding(words)\n",
- " _,(hidden,_) = self.lstm(embedded)\n",
- " pred = self.mlp(torch.cat((hidden[-1],hidden[-2]),dim=1))\n",
- " return {\"pred\":pred}\n",
- " \n",
- "model_text = MyText(len(vocab), 100, 2)\n",
- "model_text"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "input fields after batch(if batch size is 2):\n",
- "\twords: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2, 41]) \n",
- "\tseq_len: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "target fields after batch(if batch size is 2):\n",
- "\ttarget: (1)type:torch.Tensor (2)dtype:torch.int64, (3)shape:torch.Size([2]) \n",
- "\n",
- "training epochs started 2020-02-28-00-57-19\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "16a35f2b0ef0457dae15c5f240a19a3a",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=1540.0), HTML(value='')), layout=Layout(d…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.38 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 1/10. Step:154/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.767202\n",
- "\n"
- ]
- },
- {
- "data": {
- "application/vnd.jupyter.widget-view+json": {
- "model_id": "",
- "version_major": 2,
- "version_minor": 0
- },
- "text/plain": [
- "HBox(children=(FloatProgress(value=0.0, layout=Layout(flex='2'), max=28.0), HTML(value='')), layout=Layout(dis…"
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "\r",
- "Evaluate data in 0.22 seconds!\n",
- "\r",
- "Evaluation on dev at Epoch 2/10. Step:308/1540: \n",
- "\r",
- "AccuracyMetric: acc=0.743119\n",
- "\n"
- ]
- }
- ],
- "source": [
- "trainer = Trainer(train_data=train_data, dev_data=dev_data, metrics=metric,\n",
- " loss=loss, device=device, model=model_lstm)\n",
- "trainer.train()"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "metadata": {},
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python Now",
- "language": "python",
- "name": "now"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.8.0"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 2
- }
|