|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554 |
- {
- "cells": [
- {
- "cell_type": "markdown",
- "id": "fdd7ff16",
- "metadata": {},
- "source": [
- "# T5. trainer 和 evaluator 的深入介绍\n",
- "\n",
- "  1   fastNLP 中 driver 的补充介绍\n",
- " \n",
- "    1.1   trainer 和 driver 的构想 \n",
- "\n",
- "    1.2   device 与 多卡训练\n",
- "\n",
- "  2   fastNLP 中的更多 metric 类型\n",
- "\n",
- "    2.1   预定义的 metric 类型\n",
- "\n",
- "    2.2   自定义的 metric 类型\n",
- "\n",
- "  3   fastNLP 中 trainer 的补充介绍\n",
- "\n",
- "    3.1   trainer 的内部结构"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "08752c5a",
- "metadata": {
- "pycharm": {
- "name": "#%% md\n"
- }
- },
- "source": [
- "## 1. fastNLP 中 driver 的补充介绍\n",
- "\n",
- "### 1.1 trainer 和 driver 的构想\n",
- "\n",
- "在`fastNLP 0.8`中,模型训练最关键的模块便是**训练模块`trainer`、评测模块`evaluator`、驱动模块`driver`**,\n",
- "\n",
- "  在`tutorial 0`中,已经简单介绍过上述三个模块:**`driver`用来控制训练评测中的`model`的最终运行**\n",
- "\n",
- "    **`evaluator`封装评测的`metric`**,**`trainer`封装训练的`optimizer`**,**也可以包括`evaluator`**\n",
- "\n",
- "之所以做出上述的划分,其根本目的在于要**达成对于多个`python`学习框架**,**例如`pytorch`、`paddle`、`jittor`的兼容**\n",
- "\n",
- "  对于训练环节,其伪代码如下方左边紫色一栏所示,由于**不同框架对模型、损失、张量的定义各有不同**,所以将训练环节\n",
- "\n",
- "    划分为**框架无关的循环控制、批量分发部分**,**由`trainer`模块负责**实现,对应的伪代码如下方中间蓝色一栏所示\n",
- "\n",
- "    以及**随框架不同的模型调用、数值优化部分**,**由`driver`模块负责**实现,对应的伪代码如下方右边红色一栏所示\n",
- "\n",
- "| <div align=\"center\">训练过程</div> | <div align=\"center\">框架无关 对应`trainer`</div> | <div align=\"center\">框架相关 对应`driver`</div> |\n",
- "|:--|:--|:--|\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">try:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">try:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">for epoch in 1:n_eoochs:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">for epoch in 1:n_eoochs:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">for step in 1:total_steps:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:40px;\">for step in 1:total_steps:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">batch = fetch_batch()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:60px;\">batch = fetch_batch()</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">loss = model.forward(batch) </div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">loss = model.forward(batch) </div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">loss.backward()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">loss.backward()</div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">model.clear_grad()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">model.clear_grad()</div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">model.update()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">model.update()</div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">if need_save:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:40px;\">if need_save:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:60px;\">model.save()</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:60px;\">model.save()</div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">except:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">except:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">process_exception()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">process_exception()</div> | |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "3e55f07b",
- "metadata": {},
- "source": [
- "  对于评测环节,其伪代码如下方左边紫色一栏所示,同样由于不同框架对模型、损失、张量的定义各有不同,所以将评测环节\n",
- "\n",
- "    划分为**框架无关的循环控制、分发汇总部分**,**由`evaluator`模块负责**实现,对应的伪代码如下方中间蓝色一栏所示\n",
- "\n",
- "    以及**随框架不同的模型调用、评测计算部分**,同样**由`driver`模块负责**实现,对应的伪代码如下方右边红色一栏所示\n",
- "\n",
- "| <div align=\"center\">评测过程</div> | <div align=\"center\">框架无关 对应`evaluator`</div> | <div align=\"center\">框架相关 对应`driver`</div> |\n",
- "|:--|:--|:--|\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">try:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">try:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">model.set_eval()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">model.set_eval()</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">for step in 1:total_steps:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">for step in 1:total_steps:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">batch = fetch_batch()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:40px;\">batch = fetch_batch()</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">outputs = model.evaluate(batch) </div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:40px;\">outputs = model.evaluate(batch) </div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:40px;\">metric.compute(batch, outputs)</div> | | <div style=\"font-family:Consolas;font-weight:bold;color:red;text-indent:40px;\">metric.compute(batch, outputs)</div> |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">results = metric.get_metric()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">results = metric.get_metric()</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;\">except:</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;\">except:</div> | |\n",
- "| <div style=\"font-family:Consolas;font-weight:bold;color:purple;text-indent:20px;\">process_exception()</div> | <div style=\"font-family:Consolas;font-weight:bold;color:blue;text-indent:20px;\">process_exception()</div> | |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "94ba11c6",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "source": [
- "由此,从程序员的角度,`fastNLP v0.8`**通过一个`driver`让基于`pytorch`、`paddle`、`jittor`框架的模型**\n",
- "\n",
- "    **都能在相同的`trainer`和`evaluator`上运行**,这也**是`fastNLP v0.8`相比于之前版本的一大亮点**\n",
- "\n",
- "  而从`driver`的角度,`fastNLP v0.8`通过定义一个`driver`基类,**将所有张量转化为`numpy.tensor`**\n",
- "\n",
- "    并由此泛化出`torch_driver`、`paddle_driver`、`jittor_driver`三个子类,从而实现了\n",
- "\n",
- "    对`pytorch`、`paddle`、`jittor`的兼容,有关后两者的实践请参考接下来的`tutorial-6`"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "ab1cea7d",
- "metadata": {},
- "source": [
- "### 1.2 device 与 多卡训练\n",
- "\n",
- "**`fastNLP v0.8`支持多卡训练**,实现方法则是**通过将`trainer`中的`device`设置为对应显卡的序号列表**\n",
- "\n",
- "  由单卡切换成多卡,无论是数据、模型还是评测都会面临一定的调整,`fastNLP v0.8`保证:\n",
- "\n",
- "    数据拆分时,不同卡之间相互协调,所有数据都可以被训练,且不会使用到相同的数据\n",
- "\n",
- "    模型训练时,模型之间需要交换梯度;评测计算时,每张卡先各自计算,再汇总结果\n",
- "\n",
- "  例如,在评测计算运行`get_metric`函数时,`fastNLP v0.8`将自动按照`self.right`和`self.total`\n",
- "\n",
- "    指定的**`aggregate_method`方法**,默认为`sum`,将每张卡上结果汇总起来,因此最终\n",
- "\n",
- "    在调用`get_metric`方法时,`Accuracy`类能够返回全部的统计结果,代码如下\n",
- " \n",
- "```python\n",
- "trainer = Trainer(\n",
- " model=model, # model 基于 pytorch 实现 \n",
- " train_dataloader=train_dataloader,\n",
- " optimizers=optimizer,\n",
- " ...\n",
- " driver='torch', # driver 使用 torch_driver \n",
- " device=[0, 1], # gpu 选择 cuda:0 + cuda:1\n",
- " ...\n",
- " evaluate_dataloaders=evaluate_dataloader,\n",
- " metrics={'acc': Accuracy()},\n",
- " ...\n",
- " )\n",
- "\n",
- "class Accuracy(Metric):\n",
- " def __init__(self):\n",
- " super().__init__()\n",
- " self.register_element(name='total', value=0, aggregate_method='sum')\n",
- " self.register_element(name='right', value=0, aggregate_method='sum')\n",
- "```\n"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e2e0a210",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "source": [
- "注:`fastNLP v0.8`中要求`jupyter`不能多卡,仅能单卡,故在所有`tutorial`中均不作相关演示"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8d19220c",
- "metadata": {},
- "source": [
- "## 2. fastNLP 中的更多 metric 类型\n",
- "\n",
- "### 2.1 预定义的 metric 类型\n",
- "\n",
- "在`fastNLP 0.8`中,除了前几篇`tutorial`中经常见到的**正确率`Accuracy`**,还有其他**预定义的评测标准`metric`**\n",
- "\n",
- "  包括**所有`metric`的基类`Metric`**、适配`Transformers`中相关模型的正确率`TransformersAccuracy`\n",
- "\n",
- "    **适用于分类语境下的`F1`值`ClassifyFPreRecMetric`**(其中也包括召回率`Pre`、精确率`Rec`\n",
- "\n",
- "    **适用于抽取语境下的`F1`值`SpanFPreRecMetric`**;相关基本信息内容见下表,之后是详细分析\n",
- "\n",
- "| <div align=\"center\">代码名称</div> | <div align=\"center\">简要介绍</div> | <div align=\"center\">代码路径</div> |\n",
- "|:--|:--|:--|\n",
- "| `Metric` | 定义`metrics`时继承的基类 | `/core/metrics/metric.py` |\n",
- "| `Accuracy` | 正确率,最为常用 | `/core/metrics/accuracy.py` |\n",
- "| `TransformersAccuracy` | 正确率,为了兼容`Transformers`中相关模型 | `/core/metrics/accuracy.py` |\n",
- "| `ClassifyFPreRecMetric` | 召回率、精确率、F1值,适用于**分类问题** | `/core/metrics/classify_f1_pre_rec_metric.py` |\n",
- "| `SpanFPreRecMetric` | 召回率、精确率、F1值,适用于**抽取问题** | `/core/metrics/span_f1_pre_rec_metric.py` |"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "fdc083a3",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "source": [
- "  如`tutorial-0`中所述,所有的`metric`都包含`get_metric`和`update`函数,其中\n",
- "\n",
- "    **`update`函数更新单个`batch`的统计量**,**`get_metric`函数返回最终结果**,并打印显示\n",
- "\n",
- "\n",
- "### 2.1.1 Accuracy 与 TransformersAccuracy\n",
- "\n",
- "`Accuracy`,正确率,预测正确的数据`right_num`在总数据`total_num`,中的占比(公式就不用列了\n",
- "\n",
- "  `get_metric`函数打印格式为 **`{\"acc#xx\": float, 'total#xx': float, 'correct#xx': float}`**\n",
- "\n",
- "  一般在初始化时不需要传参,`fastNLP`会根据`update`函数的传入参数确定对应后台框架`backend`\n",
- "\n",
- "  **`update`函数的参数包括`pred`、`target`、`seq_len`**,**后者用来标记批次中每笔数据的长度**\n",
- "\n",
- "`TransformersAccuracy`,继承自`Accuracy`,只是为了兼容`Transformers`框架中相关模型\n",
- "\n",
- "  在`update`函数中,将`Transformers`框架输出的`attention_mask`参数转化为`seq_len`参数\n",
- "\n",
- "\n",
- "### 2.1.2 ClassifyFPreRecMetric 与 SpanFPreRecMetric\n",
- "\n",
- "`ClassifyFPreRecMetric`,分类评价,`SpanFPreRecMetric`,抽取评价,后者在`tutorial-4`中已出现\n",
- "\n",
- "  两者的相同之处在于:**第一**,**都包括召回率/查全率`Rec`**、**精确率/查准率`Pre`**、**`F1`值**这三个指标\n",
- "\n",
- "    `get_metric`函数打印格式为 **`{\"f#xx\": float, 'pre#xx': float, 'rec#xx': float}`**\n",
- "\n",
- "    三者的计算公式如下,其中`beta`默认为`1`,即`F1`值是召回率`Rec`和精确率`Pre`的调和平均数\n",
- "\n",
- "$$\\text{召回率}\\ Rec=\\dfrac{\\text{正确预测为正例的数量}}{\\text{所有本来是正例的数量}}\\qquad \\text{精确率}\\ Pre=\\dfrac{\\text{正确预测为正例的数量}}{\\text{所有预测为正例的数量}}$$\n",
- "\n",
- "$$F_{beta} = \\frac{(1 + {beta}^{2})*(Pre*Rec)}{({beta}^{2}*Pre + Rec)}$$\n",
- "\n",
- "  **第二**,可以通过参数`only_gross`为`False`,要求返回所有类别的`Rec-Pre-F1`,同时`F1`值又根据参数`f_type`又分为\n",
- "\n",
- "    **`micro F1`**(**直接统计所有类别的`Rec-Pre-F1`**)、**`macro F1`**(**统计各类别的`Rec-Pre-F1`再算术平均**)\n",
- "\n",
- "  **第三**,两者在初始化时还可以**传入基于`fastNLP.Vocabulary`的`tag_vocab`参数记录数据集中的标签序号**\n",
- "\n",
- "    **与标签名称之间的映射**,通过字符串列表`ignore_labels`参数,指定若干标签不用于`Rec-Pre-F1`的计算\n",
- "\n",
- "两者的不同之处在于:`ClassifyFPreRecMetric`针对简单的分类问题,每个分类标签之间彼此独立,不构成标签对\n",
- "\n",
- "    **`SpanFPreRecMetric`针对更复杂的抽取问题**,**规定标签`B-xx`和`I-xx`或`B-xx`和`E-xx`构成标签对**\n",
- "\n",
- "  在计算`Rec-Pre-F1`时,`ClassifyFPreRecMetric`只需要考虑标签本身是否正确这就足够了,但是\n",
- "\n",
- "    对于`SpanFPreRecMetric`,需要保证**标签符合规则且覆盖的区间与正确结果重合才算正确**\n",
- "\n",
- "    因此回到`tutorial-4`中`CoNLL-2003`的`NER`任务,如果评测方法选择`ClassifyFPreRecMetric`\n",
- "\n",
- "      或者`Accuracy`,会发现虽然评测结果显示很高,这是因为选择的评测方法要求太低\n",
- "\n",
- "    最后通过`CoNLL-2003`的词性标注`POS`任务简单演示下`ClassifyFPreRecMetric`相关的使用\n",
- "\n",
- "```python\n",
- "from fastNLP import Vocabulary\n",
- "from fastNLP import ClassifyFPreRecMetric\n",
- "\n",
- "tag_vocab = Vocabulary(padding=None, unknown=None) # 记录序号与标签之间的映射\n",
- "tag_vocab.add_word_lst(['\"', \"''\", '#', '$', '(', ')', ',', '.', ':', '``', \n",
- " 'CC', 'CD', 'DT', 'EX', 'FW', 'IN', 'JJ', 'JJR', 'JJS', 'LS', \n",
- " 'MD', 'NN', 'NNP', 'NNPS', 'NNS', 'NN|SYM', 'PDT', 'POS', 'PRP', 'PRP$', \n",
- " 'RB', 'RBR', 'RBS', 'RP', 'SYM', 'TO', 'UH', 'VB', 'VBD', 'VBG', \n",
- " 'VBN', 'VBP', 'VBZ', 'WDT', 'WP', 'WP+', 'WRB', ]) # CoNLL-2003 中的 pos_tags\n",
- "ignore_labels = ['\"', \"''\", '#', '$', '(', ')', ',', '.', ':', '``', ]\n",
- "\n",
- "FPreRec = ClassifyFPreRecMetric(tag_vocab=tag_vocab, \n",
- " ignore_labels=ignore_labels, # 表示评测/优化中不考虑上述标签的正误/损失\n",
- " only_gross=True, # 默认为 True 表示输出所有类别的综合统计结果\n",
- " f_type='micro') # 默认为 'micro' 表示统计所有类别的 Rec-Pre-F1\n",
- "metrics = {'F1': FPreRec}\n",
- "```"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "8a22f522",
- "metadata": {},
- "source": [
- "### 2.2 自定义的 metric 类型\n",
- "\n",
- "如上文所述,`Metric`作为所有`metric`的基类,`Accuracy`等都是其子类,同样地,对于**自定义的`metric`类型**\n",
- "\n",
- "    也**需要继承自`Metric`类**,同时**内部自定义好`__init__`、`update`和`get_metric`函数**\n",
- "\n",
- "  在`__init__`函数中,根据需求定义评测时需要用到的变量,此处沿用`Accuracy`中的`total_num`和`right_num`\n",
- "\n",
- "  在`update`函数中,根据需求定义评测变量的更新方式,需要注意的是如`tutorial-0`中所述,**`update`的参数名**\n",
- "\n",
- "    **需要待评估模型在`evaluate_step`中的输出名称一致**,由此**和数据集中对应字段名称一致**,即**参数匹配**\n",
- "\n",
- "    在`fastNLP v0.8`中,`update`函数的默认输入参数:`pred`,对应预测值;`target`,对应真实值\n",
- "\n",
- "    此处刻意调整为:`pred`,对应预测值,和模型输出一致;`true`,对应真实值,数据集字段需要调整\n",
- "\n",
- "  在`get_metric`函数中,根据需求定义评测指标最终的计算,此处直接计算准确率,该函数必须返回一个字典\n",
- "\n",
- "    其中,字串`'prefix'`表示该`metric`的名称,会对应显示到`trainer`的`progress bar`中\n",
- "\n",
- "根据上述要求,这里简单定义了一个名为`MyMetric`的评测模块,用于分类问题的评测,以此展开一个实例展示"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "08a872e9",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import Metric\n",
- "\n",
- "class MyMetric(Metric):\n",
- "\n",
- " def __init__(self):\n",
- " MyMetric.__init__(self)\n",
- " self.total_num = 0\n",
- " self.right_num = 0\n",
- "\n",
- " def update(self, pred, true):\n",
- " self.total_num += target.size(0)\n",
- " self.right_num += target.eq(pred).sum().item()\n",
- "\n",
- " def get_metric(self, reset=True):\n",
- " acc = self.acc_count / self.total_num\n",
- " if reset:\n",
- " self.total_num = 0\n",
- " self.right_num = 0\n",
- " return {'prefix': acc}"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "af3f8c63",
- "metadata": {},
- "source": [
- "  模型使用方面,此处仍然使用`tutorial-4`中介绍过的预定义`CNNText`模型,实现`SST-2`二分类"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "2fd210c5",
- "metadata": {},
- "outputs": [],
- "source": [
- "import sys\n",
- "sys.path.append('..')\n",
- "\n",
- "from fastNLP.models.torch import CNNText\n",
- "\n",
- "model = CNNText(embed=(len(vocab), 100), num_classes=2, dropout=0.1)\n",
- "\n",
- "from torch.optim import AdamW\n",
- "\n",
- "optimizers = AdamW(params=model.parameters(), lr=5e-4)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "0155f447",
- "metadata": {},
- "source": [
- "  数据使用方面,此处仍然使用`datasets`模块中的`load_dataset`函数,加载`SST-2`二分类数据集"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "5ad81ac7",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "from datasets import load_dataset\n",
- "\n",
- "sst2data = load_dataset('glue', 'sst2')"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "e9d81760",
- "metadata": {},
- "source": [
- "接着是数据预处理,需要注意的是,由于`MyMetric`的`update`函数中,输入参数名称为`pred`和`true`\n",
- "\n",
- "  对应地,需要将数据集中表示预测目标的字段,调整为`true`(预定义的`metric`,应调整为`target`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "cfb28b1b",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": [
- "from fastNLP import DataSet\n",
- "\n",
- "dataset = DataSet.from_pandas(sst2data['train'].to_pandas())[:6000]\n",
- "\n",
- "dataset.apply_more(lambda ins:{'words': ins['sentence'].lower().split(), 'true': ins['label']}, \n",
- " progress_bar=\"tqdm\")\n",
- "dataset.delete_field('sentence')\n",
- "dataset.delete_field('label')\n",
- "dataset.delete_field('idx')\n",
- "\n",
- "from fastNLP import Vocabulary\n",
- "\n",
- "vocab = Vocabulary()\n",
- "vocab.from_dataset(dataset, field_name='words')\n",
- "vocab.index_dataset(dataset, field_name='words')\n",
- "\n",
- "train_dataset, evaluate_dataset = dataset.split(ratio=0.85)\n",
- "\n",
- "from fastNLP import prepare_torch_dataloader\n",
- "\n",
- "train_dataloader = prepare_torch_dataloader(train_dataset, batch_size=16, shuffle=True)\n",
- "evaluate_dataloader = prepare_torch_dataloader(evaluate_dataset, batch_size=16)"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "1e21df35",
- "metadata": {},
- "source": [
- "然后就是初始化`trainer`实例,其中`metrics`变量输入的键值对,字串`'suffix'`和之前定义的字串`'prefix'`\n",
- "\n",
- "  将拼接在一起显示到`trainer`的`progress bar`中,故完整的输出形式为`{'prefix#suffix': float}`"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "926a9c50",
- "metadata": {},
- "outputs": [],
- "source": [
- "from fastNLP import Trainer\n",
- "\n",
- "trainer = Trainer(\n",
- " model=model,\n",
- " driver='torch',\n",
- " device=0, # 'cuda'\n",
- " n_epochs=10,\n",
- " optimizers=optimizers,\n",
- " train_dataloader=train_dataloader,\n",
- " evaluate_dataloaders=evaluate_dataloader,\n",
- " metrics={'suffix': MyMetric()}\n",
- ")"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "6e723b87",
- "metadata": {},
- "source": [
- "## 3. fastNLP 中 trainer 的补充介绍\n",
- "\n",
- "### 3.1 trainer 的内部结构\n",
- "\n",
- "在`tutorial-0`中,我们已经介绍了`trainer`的基本使用,从`tutorial-1`到`tutorial-4`,我们也已经\n",
- "\n",
- "  展示了很多关于`trainer`的使用案例,以下我们先补充介绍训练模块`trainer`的一些内部结构\n",
- "\n",
- "\n",
- "\n",
- "'accumulation_steps', 'add_callback_fn', 'backward', 'batch_idx_in_epoch', 'batch_step_fn',\n",
- "'callback_manager', 'check_batch_step_fn', 'cur_epoch_idx', 'data_device', 'dataloader',\n",
- "'device', 'driver', 'driver_name', 'epoch_evaluate', 'evaluate_batch_step_fn', 'evaluate_dataloaders',\n",
- "'evaluate_every', 'evaluate_fn', 'evaluator', 'extract_loss_from_outputs', 'fp16',\n",
- "'get_no_sync_context', 'global_forward_batches', 'has_checked_train_batch_loop',\n",
- "'input_mapping', 'kwargs', 'larger_better', 'load_checkpoint', 'load_model', 'marker',\n",
- "'metrics', 'model', 'model_device', 'monitor', 'move_data_to_device', 'n_epochs', 'num_batches_per_epoch',\n",
- "'on', 'on_after_backward', 'on_after_optimizers_step', 'on_after_trainer_initialized',\n",
- "'on_after_zero_grad', 'on_before_backward', 'on_before_optimizers_step', 'on_before_zero_grad',\n",
- "'on_evaluate_begin', 'on_evaluate_end', 'on_exception', 'on_fetch_data_begin', 'on_fetch_data_end',\n",
- "'on_load_checkpoint', 'on_load_model', 'on_sanity_check_begin', 'on_sanity_check_end',\n",
- "'on_save_checkpoint', 'on_save_model', 'on_train_batch_begin', 'on_train_batch_end',\n",
- "'on_train_begin', 'on_train_end', 'on_train_epoch_begin', 'on_train_epoch_end',\n",
- "'optimizers', 'output_mapping', 'progress_bar', 'run', 'run_evaluate',\n",
- "'save_checkpoint', 'save_model', 'start_batch_idx_in_epoch', 'state',\n",
- "'step', 'step_evaluate', 'total_batches', 'train_batch_loop', 'train_dataloader', 'train_fn', 'train_step',\n",
- "'trainer_state', 'zero_grad'\n",
- "\n",
- "  run(num_train_batch_per_epoch: int = -1, num_eval_batch_per_dl: int = -1, num_eval_sanity_batch: int = 2, resume_from: str = None, resume_training: bool = True, catch_KeyboardInterrupt=None)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "c348864c",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": []
- },
- {
- "cell_type": "code",
- "execution_count": null,
- "id": "43be274f",
- "metadata": {
- "pycharm": {
- "name": "#%%\n"
- }
- },
- "outputs": [],
- "source": []
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 3 (ipykernel)",
- "language": "python",
- "name": "python3"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 3
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython3",
- "version": "3.7.13"
- },
- "pycharm": {
- "stem_cell": {
- "cell_type": "raw",
- "metadata": {
- "collapsed": false
- },
- "source": []
- }
- }
- },
- "nbformat": 4,
- "nbformat_minor": 5
- }
|